Abelian surface

In mathematics, an abelian surface is 2-dimensional abelian variety.

One-dimensional complex tori are just elliptic curves and are all algebraic, but Riemann discovered that most complex tori of dimension 2 are not algebraic. The algebraic ones are called abelian surfaces and are exactly the 2-dimensional abelian varieties. Most of their theory is a special case of the theory of higher-dimensional tori or abelian varieties. Criteria to be a product of two elliptic curves (up to isogeny) were a popular study in the nineteenth century.

Invariants: The plurigenera are all 1. The surface is diffeomorphic to S1×S1×S1×S1 so the fundamental group is Z4.

Hodge diamond:

1
2 2
1 4 1
2 2
1

Examples: A product of two elliptic curves. The Jacobian variety of a genus 2 curve.

See also

References


This article is issued from Wikipedia - version of the 4/29/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.