Acceleration (differential geometry)

In mathematics and physics, acceleration is the rate of change of velocity of a curve with respect to a given linear connection. This operation provides us with a measure of the rate and direction of the "bend".[1][2]

Formal definition

Consider a differentiable manifold with a given connection . Let be a curve in with tangent vector, i.e. velocity, , with parameter .

The acceleration vector of is defined by , where denotes the covariant derivative associated to .

It is a covariant derivative along , and it is often denoted by

With respect to an arbitrary coordinate system , and with being the components of the connection (i.e., covariant derivative ) relative to this coordinate system, defined by

for the acceleration vector field one gets:

where is the local expression for the path , and .

The concept of acceleration is a covariant derivative concept. In other words, in order to define acceleration an additional structure on must be given.

See also

Notes

  1. Friedman, M. (1983). Foundations of Space-Time Theories. Princeton: Princeton University Press. p. 38. ISBN 0-691-07239-6.
  2. Benn, I.M.; Tucker, R.W. (1987). An Introduction to Spinors and Geometry with Applications in Physics. Bristol and New York: Adam Hilger. p. 203. ISBN 0-85274-169-3.

References

This article is issued from Wikipedia - version of the 1/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.