Aesculetin

Not to be confused with aesculin or aescin.
Aesculetin[1]
Names
IUPAC name
6,7-dihydroxy-chromen-2-one
Other names
esculetin
cichorigenin
6,7-dihydroxycoumarin
Identifiers
305-01-1 YesY
3D model (Jmol) Interactive image
Interactive image
ChEBI CHEBI:490095 YesY
ChEMBL ChEMBL244743 YesY
ChemSpider 4444764 YesY
ECHA InfoCard 100.005.602
5180
KEGG C09263 YesY
PubChem 5281416
Properties
C9H6O4
Molar mass 178.14 g mol1
Appearance white or light yellow powder
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Aesculetin (also known as esculetin, 6,7-dihydroxycoumarin and cichorigenin) is a derivative of coumarin. It is a natural lactone that derives from the intramolecular cyclization of a cinnamic acid derivative.

It is present in chicory and in many toxic and medicinal plants, in form of glycosides and caffeic acid conjugates.[2]

Esculetin-containing preparations used systemically can have an anticoagulant effect and might interact with anticoagulent drugs such as warfarin.

This compound is used in some sunscreens, but there is evidence that it acts as a photosensitizer for DNA damage.[3] The sodium salt of its methyl-derivative is used in dermatology for the treatment of varicose veins.[4]

It is a blue fluorescence compound found in plants.[5] Aesculin, the glucoside of aesculetin, will fluoresce under long wave ultraviolet light (360 nm). The hydrolysis of aesculin results in loss of this fluorescence. Aesculetin has the ability to quench the inner fluorescence of bovine serum albumin.[6]

Aesculetin can be transformed into scopoletin (7-hydroxy-6-methoxycoumarin) and isoscopoletin (6-hydroxy-7-methoxycoumarin) through incubation with rat liver catechol-O-methyltransferase.[7]

See also

References

  1. "Aesculetin". Sigma-Aldrich.
  2. Dey, P. M.; Harborne, J. B., eds. (1997). Plant Biochemistry. Academic Press. ISBN 9780122146749.
  3. Hausen, B. M.; Schmieder, M. (September 1986). "The sensitizing capacity of coumarins (I)". Contact Dermatitis. 15 (3): 157–163. doi:10.1111/j.1600-0536.1986.tb01317.x. PMID 3780217.
  4. ""Permethol" Data Sheet" (PDF).
  5. Lang, M.; Stober, F.; Lichtenthaler, H. K. (1991). "Fluorescence emission spectra of plant leaves and plant constituents". Radiation and Environmental Biophysics. 30 (4): 333–347. doi:10.1007/BF01210517.
  6. Liu, X.-F.; Xia, Y.-M.; Fang, Y.; Zou, L.; Liu, L.-L. (2004). "Interaction between natural pharmaceutical homologues of coumarin and bovine serum albumin". Huaxue xuebao. 62 (16): 1484–1490. INIST:16312595
  7. Müller-Enoch, D.; Seidl, E.; Thomas, H. (1976). "6.7-Dihydroxycoumarin (Aesculetin) as a substrate for catechol-o-methyltransferase". Z. Naturforsch. C (in German). 31 (5-6): 280–284. PMID 134569.
This article is issued from Wikipedia - version of the 10/21/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.