CM Draconis
Coordinates: 16h 34m 20.321s, +57° 09′ 44.70″
Observation data Epoch J2000.0 Equinox J2000.0 (ICRS) | |
---|---|
Constellation | Draco |
Right ascension | 16h 34m 20.321s |
Declination | +57° 09′ 44.70″ |
Apparent magnitude (V) | 12.90 |
Characteristics | |
Spectral type | M4.5V / M4.5V / DB |
Variable type | BY Draconis variable Eclipsing binary Flare star |
Astrometry | |
Radial velocity (Rv) | –118.71 km/s |
Proper motion (μ) | RA: –1109 mas/yr Dec.: 1203 mas/yr |
Parallax (π) | 69.2 ± 2.5[1] mas |
Distance | 47 ± 2 ly (14.5 ± 0.5 pc) |
Absolute magnitude (MV) | 12.1 |
Other designations | |
Database references | |
SIMBAD | data |
CM Draconis (GJ 630.1A) is an eclipsing binary system approximately 47 light-years away[1] in the constellation of Draco (the Dragon). The system consists of two nearly identical red dwarf stars located in the constellation Draco. The two stars orbit each other with a period of 1.27 days with a separation of 2.7 million kilometres (0.018 AU).[2] Along with two stars in the triple system KOI 126, the stars in CM Draconis are the lightest stars with precisely measured masses and radii. Consequently, the system plays an important role in testing stellar structure models for very low mass stars.[3] These comparisons find that models underpredict the stellar radii by approximately 5%. This is attributed to consequences of the stars' strong magnetic activity. According to the system's entry in the Combined General Catalogue of Variable Stars, at least one of the components is a flare star and at least one is a BY Draconis variable.[4] The white dwarf star GJ 630.1B, located 25.7 arcseconds away shares the same proper motion as the CM Draconis stars and is thus a true companion star of the system.[5] Given the system's distance of 47 light years,[6] this corresponds to a separation of at least 370 astronomical units between CM Draconis and GJ 630.1B.
Possible planetary system
The system was the subject of a dedicated search for transiting extrasolar planets in orbit around the binary from 1994–1999. In the end, the existence of all of the transiting planet candidates suggested by the project was ruled out.[7][8]
Based on variations in the timing of the system's eclipses, it has been suggested that there may be an object in a circumbinary orbit around the two red dwarf stars. In 2000, it was proposed that a Jovian planet is orbiting the system with a period of 750–1050 days.[9] A later analysis of timing variations did not confirm this proposed planet and instead suggested that there was a Jovian planet in an 18.5-year orbit, or a more massive object further out.[5] This analysis was itself not supported by a 2009 study that found the eclipse timings were indistinguishable from linear, though the binary stars do have a small eccentricity that may indicate that they are being perturbed by an orbiting body that prevents the orbit from being fully circularised by tidal effects. A massive planet or brown dwarf on an orbit of 50–200 days would fulfil the observational criteria: the requirement for dynamical stability, the constraints from the lack of observed timing variations and the requirement that the object can maintain the eccentricity of the binary stars.[3]
References
- 1 2 3 Van Altena W. F.; Lee J. T.; Hoffleit E. D. (1995). "GCTP 3775.03". The General Catalogue of Trigonometric Stellar Parallaxes, Fourth Edition. Retrieved 2014-05-08.
- ↑ "TEP: CM Draconis".
- 1 2 Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Torres, Guillermo; Gallardo, José; Guinan, Edward F.; Charbonneau, David; Wolf, Marek; Latham, David W.; Anglada-Escudé, Guillem; Bradstreet, David H.; Everett, Mark E.; O'Donovan, Francis T.; Mandushev, Georgi; Mathieu, Robert D. (2009). "Absolute Properties of the Low-Mass Eclipsing Binary CM Draconis". The Astrophysical Journal. 691 (2): 1400–1411. arXiv:0810.1541. Bibcode:2009ApJ...691.1400M. doi:10.1088/0004-637X/691/2/1400.
- ↑ Samus (2004). "CM Dra". Combined General Catalogue of Variable Stars.
- 1 2 Deeg, H. J.; Ocaña, B.; Kozhevnikov, V. P.; Charbonneau, D.; O'Donovan, F. T.; Doyle, L. R. (2008). "Extrasolar planet detection by binary stellar eclipse timing: evidence for a third body around CM Draconis". Astronomy and Astrophysics. 480 (2): 563–571. arXiv:0801.2186. Bibcode:2008A&A...480..563D. doi:10.1051/0004-6361:20079000.
- ↑ Gliese, W.; Jahreiß, H. (1991). "GJ 630.1A". Preliminary Version of the Third Catalogue of Nearby Stars. Retrieved 2008-10-12.
- ↑ "The TEP network".
- ↑ Doyle, Laurance R.; Deeg, Hans J.; Kozhevnikov, Valerij P.; Oetiker, Brian; Martín, Eduardo L.; Blue, J. Ellen; Rottler, Lee; Stone, Remington P. S.; Ninkov, Zoran; Jenkins, Jon M.; Schneider, Jean; Dunham, Edward W.; Doyle, Moira F.; Paleologou, Efthimious (2000). "Observational Limits on Terrestrial-sized Inner Planets around the CM Draconis System Using the Photometric Transit Method with a Matched-Filter Algorithm". The Astrophysical Journal. 535 (1): 338–349. arXiv:astro-ph/0001177. Bibcode:2000ApJ...535..338D. doi:10.1086/308830.
- ↑ Deeg, H. J.; Doyle, L. R.; Kozhevnikov, V. P.; Blue, J. E.; Martín, E. L.; Schneider, J. (2000). "A search for Jovian-mass planets around CM Draconis using eclipse minima timing.". Astronomy and Astrophysics. 358: L5–L8. arXiv:astro-ph/0003391. Bibcode:2000A&A...358L...5D.
External links
- "CM Draconis 3". SolStation. Retrieved 2008-06-11.