Ceiling fan

A modern ceiling fan

A ceiling fan is a mechanical fan, usually electrically powered, suspended from the ceiling of a room, that uses hub-mounted rotating paddles to circulate air.

Casablanca Fan Co. "Zephyr" ceiling fan from the early 1980s.

A ceiling fan rotates much more slowly than an electric desk fan; it cools people effectively by introducing slow movement into the otherwise still, hot air of a room. Fans never actually cool air, unlike air-conditioning equipment, but use significantly less power (cooling air is thermodynamically expensive). Conversely, a ceiling fan can also be used to reduce the stratification of warm air in a room by forcing it down to affect both occupants' sensations and thermostat readings, thereby improving climate control energy efficiency.

History

The first ceiling fans appeared in the early 1860s and 1870s, in the United States. At that time, they were not powered by any form of electric motor. Instead, a stream of running water was used, in conjunction with a turbine, to drive a system of belts which would turn the blades of two-blade fan units. These systems could accommodate several fan units, and so became popular in stores, restaurants, and offices. Some of these systems still survive today, and can be seen in parts of the southern United States where they originally proved useful.

The electrically powered ceiling fan was invented in 1882 by Philip Diehl. He had engineered the electric motor used in the first electrically powered Singer sewing machines, and in 1882 he adapted that motor for use in a ceiling-mounted fan. Each fan had its own self-contained motor unit, with no need for belt drive.[1]

Almost immediately he faced fierce competition due to the commercial success of the ceiling fan. He continued to make improvements to his invention and created a light kit fitted to the ceiling fan to combine both functions in one unit. By World War I most ceiling fans were made with four blades instead of the original two, which made fans quieter and allowed them to circulate more air.

By the 1920s ceiling fans were commonplace in the United States, and had started to take hold internationally. From the Great Depression of the 1930s until the introduction of electric air conditioning in the 1950s ceiling fans slowly faded out of vogue in the U.S.,[1] almost falling into total disuse in the U.S. by the 1960s; those which remained were considered items of nostalgia.

Meanwhile, they became popular in other countries, particularly those with hot climates such as India but without the infrastructure or financial resources for energy-hungry and complex freon-based air conditioning equipment. In 1973, Texas entrepreneur H. W. (Hub) Markwardt began importing highly efficient ceiling fans to the United States that were manufactured in India by Crompton Greaves, Ltd. Crompton Greaves had been manufacturing ceiling fans since 1937 through a joint venture formed by Greaves Cotton of India and Crompton Parkinson of England, and had perfected the world's most energy efficient ceiling fans thanks to its patented 20 pole induction motor with highly efficient heat-dissipating cast aluminum rotor shell. These Indian manufactured ceiling fans caught on slowly at first, but Markwardt's Encon Industries branded ceiling fans (ENergy CONservation) eventually found great success during the energy crisis of the late 1970s and early 1980s, since they consumed far less energy (under 70 watts of electricity) than the antiquated shaded pole motors used in most other American made fans, and far more efficient than using expensive air conditioning units.

Due to this renewed commercial success using ceiling fans effectively as an energy conservation application, many American manufacturers also started to produce, or significantly increase production of, ceiling fans. In addition to the imported Encon ceiling fans, the Casablanca Fan Company was founded in 1974. Other American manufacturers of the time included the Hunter Fan Co. (which was then a division of Robbins & Myers, Inc), FASCO (F. A. Smith Co.), Emerson Electric, and Lasko; the latter two were often branded as Sears-Roebuck.

Through the 1980s and 1990s, ceiling fans remained popular in the United States. Many small American importers, most of them rather short-lived, started importing ceiling fans. Throughout the 1980s the balance of sales between American-made ceiling fans and those imported from manufacturers in India, Taiwan, Hong Kong and eventually China changed dramatically with imported fans taking the lion's share of the market by the late 1980s. Even the most basic U.S-made fans sold at $200 to $500, while the most expensive imported fans rarely exceeded $150.

Since 2000 important inroads have been made by companies such as Monte Carlo, Minka-Air, Quorum, Craftmade, Litex and Fanimation - offering higher price ceiling fans with more decorative value. In 2001, Washington Post writer Patricia Dane Rogers[2] wrote, “Like so many other mundane household objects, these old standbys are going high-style and high-tech.”

Uses

Unlike air conditioners, fans only move air—they do not directly change its temperature. Therefore, ceiling fans that have a mechanism for reversing the direction in which the blades push air (most commonly an electrical switch on the unit's switch housing, motor housing, or lower canopy) can help in both heating and cooling.

Some ceiling fans are mechanically reversible (have adjustable blade pitch) instead of an electrically reversible motor. In this case, the blade should be pitched to the right (or left if the motor spins clockwise) for downdraft, and left (or right if the motor spins clockwise) for updraft. Hunter Hotel Original is one example.

In summer, the fan's direction of rotation should be set so that air is blown downward (Usually counter-clockwise from beneath). The blades should lead with the upturned side as they spin. The breeze created by a ceiling fan speeds the evaporation of perspiration on human skin, which makes the body's natural cooling mechanism much more efficient. Since the fan works directly on the body, rather than by changing the temperature of the air, during the summer it is a waste of electricity to leave a ceiling fan on when no one is in a room.

In winter, ceiling fans should be set to turn the opposite direction (usually clockwise; the blades should spin with the downward turned side leading) and on a low speed (or the lowest speed the fan is able to circulate the air down to the floor). Air naturally stratifies—that is, warmer air rises to the ceiling while cooler air sinks. Unfortunately, this means it is colder on or near the floor where human beings spend most of their time. A ceiling fan, with its direction of rotation set so that air is drawn upward, pulls up the colder air below, forcing the warmer air nearer the ceiling to move down to take its place, without blowing a stream of air directly at the occupants of the room. This action works to even out the temperature in the room, making it cooler nearer the ceiling, but warmer nearer the floor. Thus the thermostat in the area can be set a few degrees lower to save energy, while maintaining the same level of comfort. It is important to run the fan at a low speed (or a lowest speed the fan is able to circulate the air down to the floor) to minimize the wind chill effect described above.

An additional use of ceiling fans is coupling them with an air conditioning unit. Through-the-wall/through-the-window air conditioning units typically found in rented properties in North America usually have both the tasks of cooling the air inside the room and circulating it. Provided the ceiling fan is properly sized for the room in which it is operating, its efficiency of moving air far exceeds that of an air conditioning unit, therefore, for peak efficiency, the air conditioner should be set to a low fan setting and the ceiling fan should be used to circulate the air.

Parts of a ceiling fan

The key components of a ceiling fan are the following:

Other components, which vary by model and style, can include:

Configurations

Orbit fans inside a train in Sri Lanka.

Operating a ceiling fan

A Hunter-branded "Eclipse", which is a basic modern ceiling fan with standard pull-chain controls for the fan motor and light kit

The way in which a fan is operated depends on its manufacturer, style, and the era in which it was made. Operating methods include:

Old-style and new-style chokes

Types of ceiling fans

Many styles of ceiling fans have been developed over the years in response to several different factors such as growing energy-consumption consciousness and changes in decorating styles. The advent and evolution of electronic technology has also played a major role in ceiling fan development. Following is a list of major ceiling fan styles and their defining characteristics:

A cast-iron ceiling fan made by Hunter, dating from the early 1980s. This model is called the "Original".
A Dual-blade Ceiling fan from India
A close-up of the dropped flywheel on a FASCO "Charleston" ceiling fan
The Emerson "Heat-Fan", one of the first fans to use a stack motor

One disadvantage of this type of fan is that the flywheel, if it is made from rubber, will dry out and crack over time and eventually break; this is usually not dangerous, but it renders the fan inoperable until the flywheel is replaced.

A spinner fan
Three fans driven by a single motor and belts

Safety concerns with installation

A typical ceiling fan weighs between 15 and 50 pounds when fully assembled. While many junction boxes can support that weight while the fan is hanging still, a fan in operation exerts many additional stresses—notably torsion—on the object from which it is hung; this can cause an improper junction box to fail. For this reason, in the United States the National Electric Code (document NFPA 70, Article 314) states that ceiling fans must be supported by an electrical junction box listed for that use. It is a common mistake for homeowners to replace a light fixture with a ceiling fan without upgrading to a proper junction box.

Low-hanging fans/danger to limbs

Another concern with installing a ceiling fan relates to the height of the blades relative to the floor. Building codes throughout the United States prohibit residential ceiling fans from being mounted with the blades closer than seven feet from the floor; this sometimes proves, however, to not be high enough. If a ceiling fan is turned on and a person fully extends his or her arms into the air, as sometimes happens during normal tasks such as stretching or changing bedsheets, it is possible for the blades to strike their hands, potentially causing injury. Also, if one is carrying a long and awkward object, one end may inadvertently enter the path of rotation of a ceiling fan's blades, which can cause damage to the fan. Building codes throughout the United States also prohibit industrial ceiling fans from being mounted with the blades closer than 10 feet from the floor for these reasons.

MythBusters: "Killer Ceiling Fan"

In 2004, MythBusters tested the idea that a ceiling fan is capable of decapitation if an individual was to stick his or her neck into a running fan. Two versions of the myth were tested, with the first being the "jumping kid", involving a kid jumping up and down on a bed, jumping too high and entering the fan from below and the second being the "lover's leap", involving a husband dressed in a costume, leaping towards his wife in bed and entering the fan side-on. Kari Byron, Tory Belleci and Scottie Chapman took the lead on the investigation, though original MythBusters Jamie Hyneman and Adam Savage also assisted.

First, Kari and Scottie purchased a regular household fan and also an industrial fan, which has metal blades as opposed to wood and a more powerful motor. They and Tory then fashioned their human analogs - ballistic gel busts of Adam with actual human craniums, pig spines to approximate human spines, and latex arteries filled with fake blood - and then constructed rigs for both scenarios.

They busted the myth in both scenarios with both household and industrial fans, as tests proved that residential ceiling fans are, apparently by design, largely incapable of causing more than minor injury, having low-torque motors that stop quickly when blocked and blades composed of light materials that tend to break easily if impacted at speed (the household fan test of the "lover's leap" scenario actually broke the fan blades.) They did find that industrial fans, with their steel blades and higher speeds, proved capable of causing injury and laceration - building codes require industrial fans to be mounted with blades 10 feet above the floor, and the industrial fan test of the "lover's leap" scenario produced a lethal injury where the fan sliced through the jugular and into the vertebrae - but still lost energy rapidly once blocked and were unable to decapitate the test dummy. As a finale, Scottie, Tory and Kari created an even more dangerous fan with a lawn mower engine as the fan motor and razor sharp blades made from sheet metal in an attempt to duplicate the result, and even it was unable to achieve decapitation, but it caused lethal and horrifying injuries that compelled Adam to put it into the "MythBusters Hall of Fame."[4]

Wobble

Wobbling is caused by the weight of fan blades being out of balance with each other. This can happen due to a variety of factors, including blades being warped, blade irons being bent, blades or blade irons not being screwed on straight, or blades being different weights or shapes or sizes. (Minute differences matter.) Also, if all the blades do not exert an equal force on the air (because they have different angles, for instance), the vertical reaction forces can cause wobbling. Wobbling is not affected by the way in which the fan is mounted or the mounting surface.

Contrary to popular misconception, wobbling will not cause a ceiling fan to fall.[5] Ceiling fans are secured by clevis pins locked with either split pins or R-clips, so wobbling won't have an effect on the fan's security, unless of course, the pins/clips were not secured. To date, there are no reports of a fan wobbling itself off the ceiling and falling. However, a severe wobble can cause light fixture shades or covers to gradually loosen over time and potentially fall, posing a risk of injury to anyone under the fan, and also from any resulting broken glass. It is also worth mentioning that when the MythBusters were designing a fan with the goal of chopping off someone's head, Scottie used an edge finder to find the exact center of their blades with the aim of eliminating potentially very dangerous wobbling of their steel blades. It is important that, when installing the fan, the installer closely follows the manufacturer's instructions with regard to using proper mounting screws. It is also important that all screws (especially the set screws which hold twist-on downrods in place) be tight, and any ceiling fan light fixtures are properly assembled with their shades and covers securely attached.

References

  1. 1 2 3 Scharff, Robert; Casablanca Fan Co. (1983). The Fan Book. Reston, VA: Reston Publishing. p. 128. ISBN 0-8359-1855-6.
  2. Dane Roger, Patricia (June 14, 2001). "Eye on Design". The Washington Post. p. H5.
  3. "DC vs AC Ceiling Fans". www.hunterfan.co.uk. Retrieved 25 May 2015.
  4. Savage, Adam (co-host); Hyneman, Jamie (co-host); Chapman, Scottie (Build Team); Belleci, Tory (Build Team); Byron, Kari (Build Team) (December 5, 2004). "Ming Dynasty Astronaut". MythBusters. Season 2. Episode 24. Begins at 25:45. Discovery.
  5. Gromicko, Nick. "Ceiling Fan Inspection". International Association of Certified Home Inspectors. Retrieved May 31, 2013.
Wikimedia Commons has media related to Ceiling fan.
This article is issued from Wikipedia - version of the 11/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.