Complex conjugate representation

In mathematics, if G is a group and Π is a representation of it over the complex vector space V, then the complex conjugate representation Π is defined over the complex conjugate vector space V as follows:

Π(g) is the conjugate of Π(g) for all g in G.

Π is also a representation, as you may check explicitly.

If g is a real Lie algebra and π is a representation of it over the vector space V, then the conjugate representation π is defined over the conjugate vector space V as follows:

π(X) is the conjugate of π(X) for all X in g.[1]

π is also a representation, as you may check explicitly.

If two real Lie algebras have the same complexification, and we have a complex representation of the complexified Lie algebra, their conjugate representations are still going to be different. See spinor for some examples associated with spinor representations of the spin groups Spin(p + q) and Spin(p, q).

If \mathfrak{g} is a *-Lie algebra (a complex Lie algebra with a * operation which is compatible with the Lie bracket),

π(X) is the conjugate of π(X) for all X in g

For a unitary representation, the dual representation and the conjugate representation coincide.

See also

Notes

  1. This is the mathematicians' convention. Physicists use a different convention where the Lie bracket of two real vectors is an imaginary vector. In the physicist's convention, insert a minus in the definition.
This article is issued from Wikipedia - version of the 5/13/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.