Compound bow

A compound bow is a modern bow that uses a levering system, usually of cables and pulleys, to bend the limbs.[1]

The pulley/cam system grants the wielder a mechanical advantage, and so the limbs of a compound bow are much stiffer than those of a recurve bow or longbow. This rigidity makes the compound bow more energy-efficient than other bows, as less energy is dissipated in limb movement. The higher-rigidity, higher-technology construction also improves accuracy by reducing the bow's sensitivity to changes in temperature and humidity.

The pulley/cam system also confers a benefit called "let-off". As the string is drawn back, the pulleys rotate. The pulleys are eccentric rather than round, and so their effective radius changes as they rotate. The pulleys feature two cam tracks. An inner cam track which connects mechanically to the limbs or opposite cam and an outer cam track which the bowstring runs through. As the bow is drawn the ratio of bowstring pay-out and bowstring take-up relative to limb-weight and leverage of the cams changes. By manipulation of the shapes of these cam tracks, different draw-stroke profiles can be created. A compound bow can be soft-drawing with a slow build-up to peak weight and a gradual let-off with a long "valley" at the end. It can also be hard-drawing with a very fast build-up to peak draw-weight, a long plateau where weight is maintained, and a quick let-off with a short valley. The let-off itself is the result of the cam profiles having passed center and approaching a condition very similar to a cam-lock. In fact some compound bows, if the draw-stops or draw-length modules are removed, will self-lock at full draw and require professional equipment to unlock safely.

The compound bow was first developed in 1966 by Holless Wilbur Allen in Billings, Missouri, and a US patent was granted in 1969. The compound bow has become increasingly popular. In the United States, the compound is the dominant form of bow.

In literature of the early 20th century, before the invention of compound bows, composite bows were described as "compound".[2] This usage is now outdated.

Construction of compound bow

Browning Compound Bow Pulley System Closeup

A bow's central mount for other components such as the limbs, sights, stabilizers and quivers is called the riser. Risers are designed to be as rigid as possible. The central riser of a compound bow is usually made of aluminium, magnesium alloy, or carbon fiber and many are made of 7075 aluminium alloy.

Limbs are made of composite materials and are capable of taking high tensile and compressive forces. The limbs store all the energy of the bow – no energy is stored in the pulleys and cables. A draw weight generally falls between 10 and 100 pounds enabling arrow speeds of 150 to 370 feet per second (46 to 113 m/s)

In the most common configuration, there is a cam or wheel at the end of each limb. The shape of the cam may vary somewhat between different bow designs. There are several different concepts of using the cams to store energy in the limbs, and these all fall under a category called bow eccentrics. The four most common types of bow eccentrics are Single Cam, Hybrid Cam, Dual Cam and Binary Cam.[3] However, there are also other less common designs, like the Quad Cam and Hinged. Cams are often described using their "let-off" rating. As a cam is rotated, the force required to hold the bow in position reaches a peak and then decreases as the bow approaches maximum extension (a position known as "the wall"). The percent-difference between the maximum force encountered during the draw and the force required to hold the bow in full extension is the "let-off". This value is commonly between 65% and 80% of the peak weight for recently designed compound bows, although some older compound bows provided a let-off of only 50% and some recent designs achieve let-offs in excess of 90%.[4]

The photo on the right shows the axle attaching the limb to cam is mounted at the edge of the cam as opposed to the center. As the string is drawn the cam turns and imparts force to compress the limb. Initially, the archer has the 'short' side of the cam, with the leverage being a mechanical disadvantage. High energy input is therefore required. When near full draw is reached, the cam has turned to its full extent, the archer has gained mechanical advantage, and the least amount of force needs to be applied to the string to keep the limbs bent. This is known as "let off". The lower holding weight enables the archer to maintain the bow fully drawn and take more time to aim. This let-off enables the archer to accurately shoot a compound bow with a much higher peak draw weight than other bows (see below).

However, there are quite a few youth-oriented compound bows with low draw weights that have no let-off and have a maximum draw length deliberately set farther than the majority of young shooters would reach. This effectively makes the bow function very similar to a recurve, with the draw length determined by the shooter's preferred anchor point. This removes the necessity to adjust the bow draw length or use a different bow for different shooters (or to change bows as the shooter gets older). This type of bow is required for use in the U.S. National Archery in the Schools Program.

Compound bow strings and cables are normally made of high-modulus polyethylene and are designed to have great tensile strength and minimal stretchability, so that the bow transfers its energy to the arrow as efficiently and durably as possible. In earlier models of compound bows, the cables were often made of plastic-coated steel.

Comparison to other bow types

Technical advantages

Albina Loginova at women's individual compound 3rd place, 2013 FITA Archery World Cup, Paris, France.

Technical disadvantages

Circumstantial advantages

Circumstantial disadvantages

Quantities describing compound bows

AMO (Archery Manufacturers and merchants Organization) standard draw length is the distance from the string at full draw to the lowest point on the grip plus 1.75 inches / 4.45 cm.[6] Because the draw force may increase more or less rapidly, and again drop off more or less rapidly when approaching peak draw, bows of the same peak draw force can store different amounts of energy. Norbert Mullaney has defined the ratio of stored energy to peak draw force (S.E./P.D.F.). This is usually around one foot-pound per pound / .3048 joules per meter (but can reach 1.4 ft·lbf/lbf / .42672 J/m).

The efficiency of bows also varies. Normally between 70-85% of the stored energy is transferred to the arrow. This stored energy is referred to as potential energy. When transferred to the arrow it is referred to as kinetic energy. The product of S.E./P.D.F. and efficiency can be called the power factor. There are two measurement standards of this quantity - AMO and IBO speed. AMO is defined as the initial velocity of a 35 g / 540 grain arrow when shot from a bow with a peak draw weight of 270 N / 60 lbf and draw length 76 cm / 30 inches. IBO speed is defined as the initial velocity of a 22.7 g / 350 grain arrow shot from a bow with a peak draw weight of 300 N / 70 lbf and a draw length of 76 cm / 30 inches.

Brace height is the distance from the pivot point of the grip to the string at rest. Typically a shorter brace height will result in an increased power stroke, but comes at the price of a bow that's less forgiving to shooter error and having harsher string slap.

Arrows used

See also: Arrow

Arrows used with compound bows do not differ significantly from those used with recurve bows, being typically either aluminium alloy, carbon fiber, or a composite of the two materials. The exception being wooden arrows which are not commonly used on compound bows because of their fragility. Most arrows in use today are of the carbon fiber variety. An important distinction arrow-wise between recurve bows and compound bows is that of arrow spine. Compound bows and target recurve bows with fully center-shot cutaway risers tend to be very forgiving in regard to spine selection. Modern compound bows are typically equipped with substantially stiffer arrows than an equivalent draw-length and draw-weight recurve bow would be. Another advantage of the center-shot riser is that the arrow need not bend around the riser (nearly as much or at all) during the shot. Fine-tuning may be accomplished by adjustment of the arrow rest, or nock point on the string, rather than by changing arrow-length and tip weight.

Manufacturers produce arrow shafts with different weights, different spines (stiffness), and different lengths in the same model of shaft to accommodate different draw weights and lengths, matched to archers' different styles, preferences and physical attributes.

Arrow stiffness (spine) is an important parameter in finding arrows that will shoot accurately from any particular bow (see Archer's paradox), the spine varying with both the construction and length of the arrow.

Another important consideration is that the IBO (International Bowhunter Organization) recommends at least 5 grains of total arrow weight per pound of draw weight; this means a bow that draws 60 lb would need at least a 300 grain finished-with-tip arrow. [7]

See also

Bow construction techniques

References

  1. Paterson, W. F. "Encyclopaedia of Archery". St. Martin's Press, 1984, p. 18.
  2. Tutankhamun: Anatomy of an Excavation. (The notes were made in the 1920s and describe composite bows as "compound"; the modern compound bow did not exist at this time.) http://www.griffith.ox.ac.uk/gri/carter/135z.html
  3. "Compound Bow Cam Technology Explained - Hunter's Friend Archery". www.huntersfriend.com. Retrieved 2016-04-22.
  4. "Compound Bow Brace Height and Cam Specs - Hunter's Friend Archery". www.huntersfriend.com. Retrieved 2016-04-22.
  5. https://www.betteroutdoors.net/blogs/news/112054150-video-tutorial-2016-pse-draw-length-adjustment
  6. "AMO Standards" (PDF).
  7. "AMO Standards" (PDF). Texas Archery.
General references

External links

This article is issued from Wikipedia - version of the 10/31/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.