Condensation lemma

In set theory, a branch of mathematics, the condensation lemma is a result about sets in the constructible universe.

It states that if X is a transitive set and is an elementary submodel of some level of the constructible hierarchy Lα, that is, , then in fact there is some ordinal such that .

More can be said: If X is not transitive, then its transitive collapse is equal to some , and the hypothesis of elementarity can be weakened to elementarity only for formulas which are in the Lévy hierarchy. Also, the assumption that X be transitive automatically holds when .

The lemma was formulated and proved by Kurt Gödel in his proof that the axiom of constructibility implies GCH.

References


This article is issued from Wikipedia - version of the 7/30/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.