Constraint algebra
In theoretical physics, a constraint algebra is a linear space of all constraints and all of their polynomial functions or functionals whose action on the physical vectors of the Hilbert space should be equal to zero.
For example, in electromagnetism, the equation for the Gauss' law
is an equation of motion that does not include any time derivatives. This is why it is counted as a constraint, not a dynamical equation of motion. In quantum electrodynamics, one first constructs a Hilbert space in which Gauss' law does not hold automatically. The true Hilbert space of physical states is constructed as a subspace of the original Hilbert space of vectors that satisfy
In more general theories, the constraint algebra may be a noncommutative algebra.
See also
This article is issued from Wikipedia - version of the 3/28/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.