Copper(II) acetate
Small crystals of copper(II) acetate | |
Copper(II) acetate crystals on copper wire | |
Names | |
---|---|
IUPAC name
Tetra-μ2-acetatodiaquadicopper(II) | |
Other names
Copper(II) ethanoate Cupric acetate Copper Acetate Verdigris | |
Identifiers | |
142-71-2 (anhydrous) 6046-93-1 (hydrate) | |
3D model (Jmol) | Interactive image |
ChemSpider | 8555 |
ECHA InfoCard | 100.005.049 |
PubChem | 8895 |
UNII | 39M11XPH03 |
| |
| |
Properties | |
Cu(CH3COO)2 | |
Molar mass | 181.63 g/mol (anhydrous) 199.65 g/mol (hydrate) |
Appearance | Dark green crystalline solid |
Odor | odorless (hydrate) |
Density | 1.882 g/cm3 (hydrate) |
Melting point | Undetermined [1] |
Boiling point | 240 °C (464 °F; 513 K) |
hydrate: 7.2 g/100 mL (cold water) 20 g/100 mL (hot water) | |
Solubility | Soluble in alcohol Slightly soluble in ether and glycerol |
Refractive index (nD) |
1.545 (hydrate) |
Structure | |
Monoclinic | |
Hazards | |
Safety data sheet | Baker MSDS |
R-phrases | 22-36/37/38-50/53 |
S-phrases | 26-60-61 |
NFPA 704 | |
Flash point | Non-flammable |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) |
710mg/kg oral rat [2] |
US health exposure limits (NIOSH): | |
PEL (Permissible) |
TWA 1 mg/m3 (as Cu)[3] |
REL (Recommended) |
TWA 1 mg/m3 (as Cu)[3] |
IDLH (Immediate danger) |
TWA 100 mg/m3 (as Cu)[3] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Copper(II) acetate, also referred to as cupric acetate, is the chemical compound with the formula Cu(OAc)2 where AcO− is acetate (CH
3CO−
2). The hydrated derivative, which contains one molecule of water for each Cu atom, is available commercially. Anhydrous Cu(OAc)2 is a dark green crystalline solid, whereas Cu2(OAc)4(H2O)2 is more bluish-green. Since ancient times, copper acetates of some form have been used as fungicides and green pigments. Today, copper acetates are used as reagents for the synthesis of various inorganic and organic compounds.[4] Copper acetate, like all copper compounds, emits a blue-green glow in a flame.
Structure
Copper acetate hydrate adopts the paddle wheel structure seen also for related Rh(II) and Cr(II) tetraacetates.[5][6] One oxygen atom on each acetate is bound to one copper at 1.97 Å (197 pm). Completing the coordination sphere are two water ligands, with Cu–O distances of 2.20 Å (220 pm). The two five-coordinate copper atoms are separated by only 2.65 Å (265 pm), which is close to the Cu–Cu separation in metallic copper.[7] The two copper centers interact resulting in a diminishing of the magnetic moment such that near 90 K, Cu2(OAc)4(H2O)2 is essentially diamagnetic due to cancellation of the two opposing spins. Cu2(OAc)4(H2O)2 was a critical step in the development of modern theories for antiferromagnetic coupling.[8]
Synthesis
Copper(II) acetate is prepared industrially by heating copper(II) hydroxide or copper(II) carbonate with acetic acid.[4]
Related compounds
Heating a mixture of anhydrous copper(II) acetate and copper metal affords copper(I) acetate:[9][10]
- 2 Cu + Cu2(OAc)4 → 4 CuOAc
Unlike the copper(II) derivative, copper(I) acetate is colourless and diamagnetic.
"Basic copper acetate" is prepared by neutralizing an aqueous solution of copper(II) acetate. The basic acetate is poorly soluble. This material is a component of verdigris, the blue-green substance that forms on copper during long exposures to atmosphere.
Uses in chemical synthesis
Copper(II) acetate has found some use as an oxidizing agent in organic syntheses. In the Eglinton reaction Cu2(OAc)4 is used to couple terminal alkynes to give a 1,3-diyne:[11][12]
- Cu2(OAc)4 + 2 RC≡CH → 2 CuOAc + RC≡C−C≡CR + 2 HOAc
The reaction proceeds via the intermediacy of copper(I) acetylides, which are then oxidized by the copper(II) acetate, releasing the acetylide radical. A related reaction involving copper acetylides is the synthesis of ynamines, terminal alkynes with amine groups using Cu2(OAc)4.[13] It has been used for hydroamination of acrylonitrile.[14]
It combines with arsenic trioxide to form copper acetoarsenite, a powerful insecticide and fungicide called Paris Green or Schweinfurt Green.
References
- ↑ http://pubs.acs.org/doi/pdf/10.1021/ed053p397
- ↑ http://www.sargentwelch.com/pdf/msds/Copper_II_Acetate_212.00.pdf
- 1 2 3 "NIOSH Pocket Guide to Chemical Hazards #0150". National Institute for Occupational Safety and Health (NIOSH).
- 1 2 Richardson, H. Wayne (2005), "Copper Compounds", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH
- ↑ Van Niekerk, J. N.; Schoening, F. R. L. (1953). "X-Ray Evidence for Metal-to-Metal Bonds in Cupric and Chromous Acetate". Nature. 171 (4340): 36–37. doi:10.1038/171036a0.
- ↑ Wells, A. F. (1984). Structural Inorganic Chemistry. Oxford: Clarendon Press.
- ↑ Catterick, J.; Thornton, P. (1977). "Structures and physical properties of polynuclear carboxylates". Adv. Inorg. Chem. Radiochem. 20: 291–362. doi:10.1016/s0065-2792(08)60041-2.
- ↑ Carlin, R. L. (1986). Magnetochemistry. Berlin: Springer.
- ↑ Kirchner, S. J.; Fernando, Q. (1980). "Copper(I) Acetate". Inorg. Synth. 20: 53–55. doi:10.1002/9780470132517.ch16.
- ↑ Parish, E. J.; Kizito, S. A. (2001). "Copper(I) Acetate". Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002/047084289X.rc193.
- ↑ Stöckel, K.; Sondheimer, F. "[18]Annulene". Org. Synth. 54: 1. doi:10.15227/orgsyn.054.0001.; Coll. Vol., 6, p. 68
- ↑ Campbell, I. D.; Eglinton, G. "Diphenyldiacetylene". Org. Synth. 45: 39. doi:10.15227/orgsyn.045.0039.; Coll. Vol., 5, p. 517
- ↑ Vogel, P.; Srogl, J. (2005). "Copper(II) Acetate". EROS Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002/047084289X.rc194.pub2. ISBN 978-0-470-84289-8..
- ↑ Heininger, S. A. "3-(o-Chloroanilino)propionitrile". Org. Synth. 38: 14. doi:10.15227/orgsyn.038.0014.; Coll. Vol., 4, p. 146
External links
Wikimedia Commons has media related to Copper(II) acetate. |
- Copper.org – Other Copper Compounds 5 Feb. 2006
- Infoplease.com – Paris green 6 Feb. 2006
- Verdigris – History and Synthesis 6 Feb. 2006
- Australian - National Pollutant Inventory 8 Aug. 2016
- USA NIH National Center for Biotechnology Information 8 Aug. 2016
Salts and the ester of the acetate ion | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AcOH | He | ||||||||||||||||||
LiOAc | Be(OAc)2 BeAcOH |
B(OAc)3 | ROAc | NH4OAc | AcOAc | FAc | Ne | ||||||||||||
NaOAc | Mg(OAc)2 | Al(OAc)3 ALSOL Al(OAc)2OH Al2SO4(OAc)4 |
Si | P | S | ClAc | Ar | ||||||||||||
KOAc | Ca(OAc)2 | Sc(OAc)3 | Ti(OAc)4 | VO(OAc)3 | Cr(OAc)2 | Mn(OAc)2 Mn(OAc)3 |
Fe(OAc)2 Fe(OAc)3 |
Co(OAc)2, Co(OAc)3 |
Ni(OAc)2 | Cu(OAc)2 | Zn(OAc)2 | Ga(OAc)3 | Ge | As(OAc)3 | Se | BrAc | Kr | ||
RbOAc | Sr(OAc)2 | Y(OAc)3 | Zr(OAc)4 | Nb | Mo(OAc)2 | Tc | Ru(OAc)2 Ru(OAc)3 Ru(OAc)4 |
Rh2(OAc)4 | Pd(OAc)2 | AgOAc | Cd(OAc)2 | In | Sn(OAc)2 Sn(OAc)4 |
Sb(OAc)3 | Te | IAc | Xe | ||
CsOAc | Ba(OAc)2 | Hf | Ta | W | Re | Os | Ir | Pt(OAc)2 | Au | Hg2(OAc)2, Hg(OAc)2 |
TlOAc Tl(OAc)3 |
Pb(OAc)2 Pb(OAc)4 |
Bi(OAc)3 | Po | At | Rn | |||
Fr | Ra | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |||
↓ | |||||||||||||||||||
La(OAc)3 | Ce(OAc)x | Pr | Nd | Pm | Sm(OAc)3 | Eu(OAc)3 | Gd(OAc)3 | Tb | Dy(OAc)3 | Ho(OAc)3 | Er | Tm | Yb(OAc)3 | Lu(OAc)3 | |||||
Ac | Th | Pa | UO2(OAc)2 | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |