Differential graded category
In mathematics, especially homological algebra, a differential graded category or DG category for short, is a category whose morphism sets are endowed with the additional structure of a differential graded Z-module.
In detail, this means that , the morphisms from any object A to another object B of the category is a direct sum and there is a differential d on this graded group, i.e. for all n a linear map , which has to satisfy . This is equivalent to saying that is a cochain complex. Furthermore, the composition of morphisms is required to be a map of complexes, and for all objects A of the category, one requires .
See also
Examples
- Any additive category may be considered to be a DG-category by imposing the trivial grading (i.e. all vanish for n ≠ 0) and trivial differential (d = 0).
- A little bit more sophisticated is the category of complexes over an additive category . By definition, is the group of maps which do not need to respect the differentials of the complexes A and B, i.e. . The differential of such a morphism of degree n is defined to be , where are the differentials of A and B, respectively. This applies to the category of complexes of quasi-coherent sheaves on a scheme over a ring.
- A DG-category with one object is the same as a DG-ring. A DG-ring over a field is called DG-algebra, or differential graded algebra.
Further properties
The category of small dg-categories can be endowed with a model category structure such that weak equivalences are those functors that induce an equivalence of derived categories.[1]
Given a dg-category C over some ring R, there is a notion of smoothness and properness of C that reduces to the usual notions of smooth and proper morphisms in case C is the category of quasi-coherent sheaves on some scheme X over R.
References
- ↑ Tabuada, Gonçalo (2005), "Invariants additifs de DG-catégories", International Mathematics Research Notices (53): 3309–3339, doi:10.1155/IMRN.2005.3309, ISSN 1073-7928
- Keller, Bernhard (1994), "Deriving DG categories", Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 27 (1): 63–102, ISSN 0012-9593, MR 1258406