Diphenyl diselenide

Diphenyl diselenide
Names
IUPAC name
Diphenyl diselenide
Other names
Phenyl diselenide
Identifiers
1666-13-3 YesY
3D model (Jmol) Interactive image
ChemSpider 14710 YesY
ECHA InfoCard 100.015.256
PubChem 15460
RTECS number JM9152500
Properties
C12H10Se2
Molar mass 312.15 g·mol−1
Appearance Orange powder
Density 1.84 g/cm3
Melting point 59 to 61 °C (138 to 142 °F; 332 to 334 K)
Insoluble
Solubility in other solvents Dichloromethane
Structure
90° at Se
C2 symmetry
0 D
Hazards
Main hazards Toxic
R-phrases R23/25 R33 R50/53
S-phrases S20/21 S28 S45 S60 S61
Related compounds
Related compounds
Ph2S2,
C6H5SeH
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Diphenyl diselenide is the chemical compound with the formula (C6H5)2Se2, abbreviated Ph2Se2 This orange-coloured solid is the oxidized derivative of benzeneselenol. It is used as a source of the PhSe unit in organic synthesis.

Ph2Se2 is prepared by the oxidation of benzeneselenoate, the conjugate base of benzeneselenol which is generated via the Grignard reagent:[1]

PhMgBr + Se PhSeMgBr
2 PhSeMgBr + Br2 Ph2Se2 + 2 MgBr2

The molecule has idealized C2-symmetry, like hydrogen peroxide and related molecules. The Se-Se bond length of 2.29 Å the C-Se-Se-C dihedral angle is 82° and the C-Se-Se angles are near 110°.[2]

Reactions

A reaction characteristic of Ph2Se2 is its reduction:

Ph2Se2 + 2 Na 2 PhSeNa

PhSeNa is a useful nucleophile used to introduce the phenylselenyl group by nucleophilic substitution of alkyl halides, alkyl sulfonates (mesylates or tosylates) and epoxides. The example below was taken from a synthesis of morphine.[3]

Another characteristic reaction is chlorination:

Ph2Se2 + Cl2 2 PhSeCl

PhSeCl is a powerful electrophile, used to introduce PhSe groups by reaction with a variety of nucleophiles, including enolates, enol silyl ethers, Grignard reagents, organolithium reagents, alkenes and amines. In the sequence below (early steps in the synthesis of Strychnofoline), a PhSe group is introduced by reaction of a lactam enolate with PhSeCl.[4] This sequence is a powerful method for the conversion of carbonyl compounds to their α,β-unsaturated analogs.[5]

Diphenyl diselenide itself is also a source of a weakly electrophilic PhSe group in reactions with relatively powerful nucleophiles like Grignard reagents, lithium reagents and ester enolates (but not ketone enolates or weaker nucleophiles). PhSeCl is both more reactive, and more efficient, since with Ph2Se2 half of the selenium is wasted.

Ph2Se2 + Nu → PhSeNu + PhSe

N-Phenylselenophthalimide (N-PSP) can be used if PhSeCl is too strong and diphenyl diselenide is too weak or wasteful.[6]

References

  1. Reich, H. J.; Cohen, M. L.; Clark, P. S. (1979). "Reagents for Synthesis of Organoselenium Compounds: Diphenyl Diselenide and Benzeneselenenyl Chloride". Org. Synth. 59: 141.; Coll. Vol., 6, p. 533
  2. Marsh, R. E. (1952). "The Crystal Structure of Diphenyl Diselenide". Acta Crystallographica. 5 (4): 458–462. doi:10.1107/S0365110X52001349.
  3. Taber, D. F.; Neubert, T. D.; Rheingold, A. L. (2002). "Synthesis of (−)-Morphine". Journal of the American Chemical Society. 124 (42): 12416–12417. doi:10.1021/ja027882h. PMID 12381175.
  4. Lerchner, A.; Carreira, E. M. (2002). "First Total Synthesis of (±)-Strychnofoline via a Highly Selective Ring-Expansion Reaction". Journal of the American Chemical Society. 124 (50): 14826–14827. doi:10.1021/ja027906k.
  5. Reich, H. J.; Wollowitz, S. (1993). "Preparation of α,β-Unsaturated Carbonyl Compounds and Nitriles by Selenoxide Elimination". Organic Reactions. 44: 1–296. doi:10.1002/0471264180.or044.01.
  6. Barrero, A. F.; Alvarez-Manzaneda, E. J.; Chahboun, R.; Corttés, M.; Armstrong, V. (1999). "Synthesis and Antitumor Activity of Puupehedione and Related Compounds". Tetrahedron. 55 (52): 15181–15208. doi:10.1016/S0040-4020(99)00992-8.
This article is issued from Wikipedia - version of the 6/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.