Cox process
In probability theory, a Cox process, also known as a doubly stochastic Poisson process or mixed Poisson process, is a stochastic process which is a generalization of a Poisson process where the time-dependent intensity λ(t) is itself a stochastic process. The process is named after the statistician David Cox, who first published the model in 1955.[1]
Cox processes are used to generate simulations of spike trains (the sequence of action potentials generated by a neuron),[2] and also in financial mathematics where they produce a "useful framework for modeling prices of financial instruments in which credit risk is a significant factor."[3]
See also
- Poisson hidden Markov model
- Doubly stochastic model
- Inhomogeneous Poisson process, where λ(t) is restricted to a deterministic function
- Ross's conjecture
- Gaussian process
References
- Notes
- ↑ Cox, D. R. (1955). "Some Statistical Methods Connected with Series of Events". Journal of the Royal Statistical Society. 17 (2): 129–164. doi:10.2307/2983950.
- ↑ Krumin, M.; Shoham, S. (2009). "Generation of Spike Trains with Controlled Auto- and Cross-Correlation Functions". Neural Computation. 21 (6): 1642–1664. doi:10.1162/neco.2009.08-08-847. PMID 19191596.
- ↑ Lando, David (1998). "On cox processes and credit risky securities". Review of Derivatives Research. 2 (2–3): 99–12. doi:10.1007/BF01531332.
- Bibliography
- Cox, D. R. and Isham, V. Point Processes, London: Chapman & Hall, 1980 ISBN 0-412-21910-7
- Donald L. Snyder and Michael I. Miller Random Point Processes in Time and Space Springer-Verlag, 1991 ISBN 0-387-97577-2 (New York) ISBN 3-540-97577-2 (Berlin)
This article is issued from Wikipedia - version of the 9/4/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.