Expander mixing lemma

The expander mixing lemma states that, for any two subsets of a d-regular expander graph with vertices, the number of edges between and is approximately what you would expect in a random d-regular graph, i.e. .

Statement

Let be a d-regular graph on n vertices with the second-largest eigenvalue (in absolute value) of the adjacency matrix. For any two subsets , let be the number of edges between S and T (counting edges contained in the intersection of S and T twice). Then

For biregular graphs, we have the following variation.[1]

Let be a bipartite graph such that every vertex in is adjacent to vertices of and every vertex in is adjacent to vertices of . Let with and . Let . Then

Note that is the largest absolute value of the eigenvalues of .

Proof

Let be the adjacency matrix for . For a vertex subset , let . Here is the standard basis element of with a one in the position. Thus in particular , and the number of edges between and is given by .

Expand each of and into a component in the direction of the largest-eigenvalue eigenvector and an orthogonal component:

,

where . Then

.

The conclusion follows, since , and .

Converse

Bilu and Linial showed[2] that the converse holds as well: if a graph satisfies the conclusion of the expander mixing lemma, that is, for any two subsets ,

then its second-largest eigenvalue is .

Notes

  1. See Theorem 5.1 in "Interlacing Eigenvalues and Graphs" by Haemers
  2. Expander mixing lemma converse.

References

This article is issued from Wikipedia - version of the 11/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.