Hair analysis

This article is about scientific uses of hair analysis. For pseudoscienfic health practice, see Hair analysis (alternative medicine).
Hair analysis
Diagnostics

Schema depicting how human hair appears in a scanning electron microscope
HCPCS-L2 P2031

Hair analysis may refer to the chemical analysis of a hair sample, but can also refer to microscopic analysis or comparison. Chemical hair analysis may be considered for retrospective purposes when blood and urine are no longer expected to contain a particular contaminant, typically three months or less. Its most widely accepted use is in the fields of forensic toxicology and, increasingly, environmental toxicology.[1][2] Several alternative medicine fields also use various hair analyses for environmental toxicology but these uses are controversial, evolving and not standardized.

Microscopic hair analysis has traditionally been used in forensics as well. Analysts examine a number of different characteristics of hairs under a microscope, usually comparing hair taken from a crime scene and hair taken from a suspect. It is still acknowledged as a useful technique for confirming hairs do not match, but the ability of the field to identify a specific person has fallen into disrepute after DNA analysis showed that many claimed matches from this technique were false.

Hair analysis in forensic toxicology

Hair analysis is used for the detection of many therapeutic drugs and recreational drugs, including cocaine, heroin, benzodiazepines and amphetamines.[3][4] Hair analysis is less invasive than a blood test, if not quite as universally applicable. In this context, it has been reliably used to determine compliance with therapeutic drug regimes or to check the accuracy of a witness statement that an illicit drug has not been taken. Hair testing is an increasingly common method of assessment in substance misuse, particularly in legal proceedings, or in any situation where a subject may have decided not to tell the entire truth about his or her substance-using history. It is also used by private employers who test their employees. Hair analysis has the virtue of showing a 'history' of drug use due to hair's slow growth. Urine analysis might detect drugs taken in the past three days; hair analysis can sometimes stretch back as far as a month, although certain cosmetic treatments (e.g. dyeing hair) can interfere with this.[5] Hair analysis has the ability to measure a large number of potentially interacting elements, although that trait is shared with many other drug tests.

The judicial admissibility of the test in the United States is guided by the Daubert standard. A notable court case was United States v. Medina, 749 F.Supp. 59 (E.D.N.Y.1990).[6][7]

Microscopic hair analysis in forensics

Microscopic hair analysis is the science of comparing several strands of hair under a microscope and attempting to deduce if the strands 'match'. It became established as a forensic science by the 1950s.[8] Researchers often monitored more than a dozen attributes, including pigment distribution and scale patterns. This technique has been used in criminal investigations to try to tie hair found at a crime scene, or other location of note, and confirm if the hair matches that of a suspect. While a simple hair color match might be consistent with a certain suspect having been at the scene - black hair at the scene when the suspect has black hair - microscopic hair analysis began to claim a stronger standard by the 1970s. Rather than merely "narrow the field" of possibilities, hair analysts claimed to actually match a specific person, such that the hair could be 'proof' of a specific suspect's presence. While the typed reports often hedged the certainty of microscopic hair analysis, witnesses in court would not always be as modest; the manager of the Montana state crime lab testified there was a "1 in 10,000 chance" that hairs found at a crime scene did not come from the suspect in one case, for example.[9] Microscopic hair analysis has a long tradition of being used in fiction as well; it was originally popularized by Sherlock Holmes before it was even used by the police.[8] Fictional works involving detectives have continued to use it since, including Columbo, Quincy, ME, Dexter, and CSI.[9]

Skepticism about the stronger claims used by witnesses in the 1970s and 80s existed then; researchers said in 1974 that the whole process was inherently subjective, and the FBI wrote in 1984 that hair analysis cannot positively match one single person.[8] In the 1990s, DNA profiling was introduced as a key new technique into forensics investigations and introduced a new level of certainty into them. DNA analysis of old cases in the 1970s and 80s, however, contradicted a number of earlier matches on the basis of hair analysis. In 1994, the Justice Department created a task force which would eventually review 6,000 cases by 2004, focusing on the work of one particularly zealous examiner, Michael Malone.[8] These reviews came after reports that sloppy work by examiners at the FBI lab was producing unreliable forensic evidence in court trials. At first, these investigations were largely kept quiet; The Washington Post reported that "Instead of releasing those findings, they made them available only to the prosecutors in the affected cases."[8] A study of FBI Laboratory hair analysis cases between 1996 and 2000 was released in 2002 by Max M. Houck and Bruce Budowle.[10] The study showed that 11% of hair analysis "matches" were contradicted by DNA analysis. As the set of cases analyzed was one which would be expected to favor matches strongly in any case - only hair of individuals the police already believed were potential suspects was sent in - this error rate was seen as extremely high.[8]

Kirk Odom was convicted of rape in 1982 by no physical evidence except microscopic hair analysis performed by the FBI Crime Laboratory.[8] Combined with a witness's identification in a line-up (another technique which modern techniques have shown less reliable than earlier thought), Odom was sentenced to twenty or more years in jail. DNA analysis, however, proved that Odom was entirely innocent.[9] While Odom had been released from prison in 2003, he was officially exonerated in 2012.[11] In a similar case, Santae Tribble was convicted of murder in 1979 due to a hair analysis match of hair found at the scene, despite having three witnesses who gave him an alibi when the crime was committed. The prosecutor went even further than the expert witness, saying in his closing statement that "There is one chance, perhaps for all we know, in 10 million that it could [be] someone else's hair."[8] DNA testing in January 2012 showed that the prosecution's key piece of evidence, the hair, did not in fact match the defendant. Tribble was exonerated in December 2012, despite having already served 28 years in prison.[12]

The outcry from defense attorneys has forced the FBI to open up on disputed hair analysis matches since 2012. The Justice department began an "unprecedented" review of old cases involving hair analysis in July 2013, examining more than 21,000 cases referred to the FBI Lab's hair unit from 1982 through 1999, and including as many as 27 death penalty convictions in which FBI experts may have exaggerated the reliability of hair analysis in their testimony.[13] The review is still in progress, but in 2015, it released findings on 268 trials examined so far in which hair analysis was used. The review concluded that in 257 of these 268 trials, the analysts gave flawed testimony that overstated the accuracy of the findings in favor of the prosecution. About 1200 cases remain to be examined.[14]

In environmental toxicology

Analysis of hair samples has many advantages as a preliminary screening method for the presence of toxic substances deleterious to health after exposures in air, dust, sediment, soil and water, food and toxins in the environment. The advantages of hair analysis include the non-invasiveness, low cost and the ability to measure a large number of, potentially interacting, toxic and biologically essential elements. Hence, head hair analysis is now increasingly being used as a preliminary test to see whether individuals have absorbed poisons linked to behavioral or health problems.[1]

Detection of long term elemental effects

There appears to be genuine validity to the use of hair analysis in the measurement of lifelong, or long-term heavy metal burden, if not the measurement of general elemental analysis. Several interesting studies including the analysis of Ludwig van Beethoven's hair have been conducted in conjunction with the National Institutes of Health, and Centers for Disease Control and Prevention to name a few.

A 1999 study on hair concentrations of calcium, iron, and zinc in pregnant women and effects of supplementation, it was concluded that "From the analyses, it was clear that hair concentrations of Ca, Fe, and Zn could reflect the effects of supplementation... Finally, it could be concluded that mineral element deficiencies might be convalesced by adequate compensations of mineral element nutrients."[15]

Occupational, environmental and alternative medicine

Hair analysis has been used in occupational,[16] environmental and some branches of alternative medicine as a method of investigation to assist screening and/or diagnosis. The hair is sampled, processed and analyzed, studying the levels of mineral and metals in the hair sample. Using the results, as part of a proper examination or test protocol,[17] practitioners screen for toxic exposure and heavy metal poisoning. Some advocates claim that they can also diagnose mineral deficiencies and that people with autism have unusual hair mineral contents.[18] These uses are often controversial, and the American Medical Association states, "The AMA opposes chemical analysis of the hair as a determinant of the need for medical therapy and supports informing the American public and appropriate governmental agencies of this unproven practice and its potential for health care fraud."[19] A recent review of scientific literature by Dr Kempson highlighted analysis of metals/minerals in hair can be applied in large population studies for researching epidemiology and groups of chronically exposed populations, however any attempt to provide a diagnosis based on hair for an individual is not possible.[20] An exception to this can be in advanced analyses for acute poisoning.[21]

Literature

References

  1. 1 2 Masters, Rogers D. "Validity of Head Hair Analysis and Methods of Assessing Multiple Chemical Sensitivity". Dartmouth College. Archived from the original on 2005-09-03. Retrieved 9 December 2006.
  2. Dartmouth Toxic Metals Research Program. A Metals Primer. Center for Environmental Health Sciences at Dartmouth. accessed 9 Dec 2006.
  3. Welch M.J., Sniegoski L.T., Allgood C.C., Habram M. (1993). "Hair analysis for drugs of abuse: Evaluation of analytical methods, environmental issues, and development of reference materials". J Anal Toxicol. 17 (7): 389–398. doi:10.1093/jat/17.7.389.
  4. Balikova Marie (2005). "Hair Analysis for Drugs of Abuse: Plausibility of Interpretation" (PDF). Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 149 (2): 199–207. doi:10.5507/bp.2005.026.
  5. Gautam, Lata; Cole, Mike (2013-09-13). "Hair Analysis in Forensic Toxicology". Forensic Magazine. Retrieved 2014-08-13.
  6. Atlantic reporter: Second series, Volume 681. West Pub. Co. 1996. p. 44
  7. "NEVADA EMPLOYMENT SECURITY DEPARTMENT v. Cynthia Holmes", Kamer Zucker Abbott. 1996. Accessed March 21, 2011
  8. 1 2 3 4 5 6 7 8 Hsu, Spencer (April 16, 2012). "Convicted defendants left uninformed of forensic flaws found by Justice Dept.". The Washington Post. Retrieved August 31, 2014.
  9. 1 2 3 Haberman, Clyde (2014-05-18). "DNA Analysis Exposes Flaws in an Inexact Forensic Science". The New York Times. Retrieved 2014-08-31.
  10. Houck, Max; Budowle, Bruce (2002). "Correlation of microscopic and mitochondrial DNA hair comparisons.". Journal of Forensic Sciences. 47 (5): 964–967. PMID 12353582.
  11. Hsu, Spencer (July 10, 2012). "Kirk Odom, who served 20 years for 1981 D.C. rape, is innocent, prosecutors say". The Washington Post. Retrieved August 31, 2014.
  12. Hsu, Spencer (December 14, 2012). "Santae Tribble cleared in 1978 murder based on DNA hair test". The Washington Post. Retrieved August 31, 2014.
  13. Hsu, Spencer (July 17, 2013). "U.S. reviewing 27 death penalty convictions for FBI forensic testimony errors". The Washington Post. Retrieved August 31, 2014.
  14. Hsu, Spencer (April 18, 2015). "FBI admits flaws in hair analysis over decades". The Washington Post. Retrieved April 22, 2015.
  15. Leung, PL; Huang, HM; Sun, DZ; Zhu, MG (September 1999). "Hair concentrations of calcium, iron, and zinc in pregnant women and effects of supplementation". Biol Trace Elem Res. 69: 269–82. doi:10.1007/BF02783879. PMID 10468164.
  16. Niculescu, T; Dumitru, R; Botha, V; Alexandrescu, R; Manolescu, N (February 1983). "Relationship between the lead concentration in hair and occupational exposure.". Br J Ind Med. 40 (1): 67–70. doi:10.1136/oem.40.1.67. PMC 1009120Freely accessible. PMID 6824602.
  17. Bass DA, Hickok D, Quig D, Urek K.Trace element analysis in hair: factors determining accuracy, precision, and reliability - Statistical Data Included. Altern Med Review 2001;6(5):472-481.
  18. Lathe, Richard, and Michael Le Page. "Toxic metal clue to autism: a study has revealed startling differences in mercury levels in the hair of autistic and normal children. (This Week)." New Scientist 178.2400 (June 21, 2003): 4(2).
  19. Hair analysis: A potential for medical abuse. Policy number H-175.995,(Sub. Res. 67, I-84; Reaffirmed by CLRPD Rep. 3 - I-94)
  20. Kempson I.M., Lombi E. (2011). "Hair analysis as a biomonitor for toxicology, disease and health status". Chemical Society Reviews. 40: 3915. doi:10.1039/C1CS15021A.
  21. Kempson I.M., Henry D.A. (2010). "Synchrotron Radiation Reveals Arsenic Poisoning and Metabolism in Hair: The case of Phar Lap". Angewandte Chemie International Edition. 49: 4237–4240. doi:10.1002/anie.200906594.

Bibliography

This article is issued from Wikipedia - version of the 11/6/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.