Hua's identity

In algebra, Hua's identity[1] states that for any elements a, b in a division ring,

whenever . Replacing with gives another equivalent form of the identity:

An important application of the identity is a proof of Hua's theorem.[2][3] The theorem says that if is a function between division rings and if satisfies:

then is either a homomorphism or an antihomomorphism. The theorem is important because of the connection to the fundamental theorem of projective geometry.

Proof

References

  1. โ†‘ Cohn 2003, ยง9.1
  2. โ†‘ Cohn 2003, Theorem 9.1.3
  3. โ†‘ "Is this map of domains a Jordan homomorphism?". math.stackexchange.com. Retrieved 2016-06-28.
This article is issued from Wikipedia - version of the 6/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.