Intersection theorem
In projective geometry, an intersection theorem or incidence theorem is a statement concerning an incidence structure – consisting of points, lines, and possibly higher-dimensional objects and their incidences – together with a pair of objects A and B (for instance, a point and a line). The "theorem" states that, whenever a set of objects satisfies the incidences (i.e. can be identified with the objects of the incidence structure in such a way that incidence is preserved), then the objects A and B must also be incident. An intersection theorem is not necessarily true in all projective geometries; it is a property that some geometries satisfy but others don't.
For example, Desargues' theorem can be stated using the following incidence structure:
- Points:
- Lines:
- Incidences (in addition to obvious ones such as ):
The implication is then —that point R is incident with line PQ.
Famous examples
Desargues' theorem holds in a projective plane P if and only if P is the projective plane over some division ring (skewfield} D — . The projective plane is then called desarguesian. A theorem of Amitsur and Bergman states that, in the context of desarguesian projective planes, for every intersection theorem there is a rational identity such that the plane P satisfies the intersection theorem if and only if the division ring D satisfies the rational identity.
- Pappus's hexagon theorem holds in a desarguesian projective plane if and only if D is a field; it corresponds to the identity .
- Fano's axiom (which states a certain intersection does not happen) holds in if and only if D has characteristic ; it corresponds to the identity a + a = 0.
References
- L. H. Rowen; Polynomial Identities in Ring Theory. Academic Press: New York, 1980.
- S. A. Amitsur; "Rational Identities and Applications to Algebra and Geometry", Journal of Algebra 3 no. 3 (1966), 304–359.