Incremental decision tree

An incremental decision tree algorithm is an online machine learning algorithm that outputs a decision tree. Many decision tree methods, such as C4.5, construct a tree using a complete dataset. Incremental decision tree methods allow an existing tree to be updated using only new individual data instances, without having to re-process past instances. This may be useful in situations where the entire dataset is not available when the tree is updated (i.e. the data was not stored), the original data set is too large to process or the characteristics of the data change over time.

Applications

Methods

Here is a short list of incremental decision tree methods, organized by their (usually non-incremental) parent algorithms.

CART family

CART[1] (1984) is a nonincremental decision tree inducer for both classification and regression problems. developed in the mathematics and statistics communities. CART traces its roots to AID (1963)[2]

ID3/C4.5 family

ID3 (1986)[4] and C4.5 (1993)[5] were developed by Quinlan and have roots in Hunt's Concept Learning System (CLS, 1966)[6] The ID3 family of tree inducers was developed in the engineering and computer science communities.

note: ID6NB (2009)[12] is not incremental.

Other Incremental Learning Systems

There were several incremental concept learning systems that did not build decision trees, but which predated and influenced the development of the earliest incremental decision tree learners, notably ID4.[7] Notable among these was Schlimmer and Granger's STAGGER (1986),[13] which learned disjunctive concepts incrementally. STAGGER was developed to examine concepts that changed over time (concept drift). Prior to STAGGER, Michalski and Larson (1978)[14] investigated an incremental variant of AQ (Michalski, 1973),[15] a supervised system for learning concepts in disjunctive normal form (DNF). Experience with these earlier systems and others, to include incremental tree-structured unsupervised learning, contributed to a conceptual framework for evaluating incremental decision tree learners specifically, and incremental concept learning generally, along four dimensions that reflect the inherent tradeoffs between learning cost and quality:[7] (1) cost of knowledge base update, (2) the number of observations that are required to converge on a knowledge base with given characteristics, (3) the total effort (as a function of the first two dimensions) that a system exerts, and the (4) quality (often consistency) of the final knowledge base. Some of the historical context in which incremental decision tree learners emerged is given in Fisher and Schlimmer (1988),[16] and which also expands on the four factor framework that was used to evaluate and design incremental learning systems.

VFDT

Very Fast Decision Trees learner reduces training time for large incremental data sets by subsampling the incoming data stream.

OLIN and IFN

See also

References

  1. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984) Classification and regression trees. Belmont, CA: Wadsworth International Group.
  2. Morgan, J. N, & Sondquist, J. A. (1963) Problems in the analysis of survey data, and a proposal. J. Amer. Statist. Assoc., 58, 415-434.
  3. Crawford, S. L. (1989) Extensions to the CART algorithm. International journal of man-machine studies. 31, 197-217.
  4. Quinlan, J. R. (1986) Induction of Decision Trees. Machine Learning 1(1), 81-106.
  5. Quinlan, J. R. (1993) C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.
  6. Hunt, E. B., Marin, J., & Stone, P. J. (1966) Experiments in induction. New York: Academic Press.
  7. 7.0 7.1 7.2 7.3 Schlimmer, J. C., & Fisher, D. (1986) A case study of incremental concept induction. Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 496-501). Philadelphia, PA: Morgan Kaufmann.
  8. Utgoff, P. (1988) ID5: An incremental ID3. Fifth International Conference on Machine Learning, pp. 107-120. Morgan Kaufmann Publishers.
  9. Utgoff, P. E. (1989) Incremental induction of decision trees. Machine Learning 4, 161-186.
  10. Kroon, M., Korzec, S., Adriani, P. (2007) ID6MDL: Post-Pruning Incremental Decision Trees.
  11. Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (1997) Decision tree induction based on efficient tree restructuring. Machine Learning 29, 5-44.
  12. Appavu, S., & Rajaram, R. (2009) Knowledge-based system for text classification using ID6NB algorithm. Knowledge-based systems 22 1-7.
  13. Schlimmer, J. C., &Granger, R. H., Jr. (1986). Incremental learning from noisy data. Machine Learning 1, 317-354.
  14. Michalski, R. S., & Larson, J. B. (1978). Selection of most representative training examples and incremental generation of VL hypotheses: The underlying methodology and the description of the programs ESEL and AQ11 (Tech. Rep. No. UIUCDCS-R-78-867). Urbana: University of Illinois, Department of Computer Science.
  15. Michalski, R. S. (1973). Discovering classification rules using variable-valued logic system VL1. Proceedings of the Third International Joint Conference on Artificial Intelligence (pp. 162-172). Stanford, CA: Morgan Kaufmann.
  16. Fisher, D. & Schlimmer, J. Models of Incremental Concept Learning: A coupled research proposal. Vanderbilt University Technical Report CS-88-05 (1988), retrieved from http://www.vuse.vanderbilt.edu/~dfisher/tech-reports/tr-88-05/proposal.html
  17. Domingos, P., Hulten, G. (2000) Mining high-speed data streams. Proceedings KDD 2000, ACM Press, New York, NY, USA, pp. 71–80.
  18. Hulten, G.,Spencer, L.,Domingos, P. (2001) Mining time-changing data streams. Proceedings KDD 2001, ACM Press, New York, NY, pp. 97–106.
  19. Gama, J., Fernandes, R., & Rocha, R. (2006) Decision trees for mining data streams. Intelligent Data Analysis 10 23-45.
  20. Last, M. (2002) Online classification of nonstationary data streams, Intell. Data Anal. 6(2) 129–147.
  21. Cohen, L., Avrahami, G., Last, M., Kandel, A. (2008) Info-fuzzy algorithms for mining dynamic data streams. Applied soft computing. 8 1283-1294.
  22. Maimon, O., Last, M. (2000) The info-fuzzy network (IFN) methodology. Knowledge Discovery and Data Mining. Boston: Kluwer Academic Publishers

External links

This article is issued from Wikipedia - version of the 6/7/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.