Ion plating
Ion plating is a physical vapor deposition (PVD) process that is sometimes called ion assisted deposition (IAD) or ion vapor deposition (IVD) and is a version of vacuum deposition. Ion plating uses concurrent or periodic bombardment of the substrate, and deposits film by atomic-sized energetic particles. Bombardment prior to deposition is used to sputter clean the substrate surface. During deposition the bombardment is used to modify and control the properties of the depositing film. It is important that the bombardment be continuous between the cleaning and the deposition portions of the process to maintain an atomically clean interface.
In ion plating the energy, flux and mass of the bombarding species along with the ratio of bombarding particles to depositing particles are important processing variables. The depositing material may be vaporized either by evaporation, sputtering (bias sputtering), arc vaporization or by decomposition of a chemical vapor precursor chemical vapor deposition (CVD). The energetic particles used for bombardment are usually ions of an inert or reactive gas, or, in some cases, ions of the condensing film material (“film ions”). Ion plating can be done in a plasma environment where ions for bombardment are extracted from the plasma or it may be done in a vacuum environment where ions for bombardment are formed in a separate ion gun. The latter ion plating configuration is often called Ion Beam Assisted Deposition (IBAD). By using a reactive gas or vapor in the plasma, films of compound materials can be deposited.
Ion plating is used to deposit hard coatings of compound materials on tools, adherent metal coatings, optical coatings with high densities, and conformal coatings on complex surfaces.
The ion plating process was first described in the technical literature by Donald M. Mattox of Sandia National Laboratories in 1964.[1]
Bibliography
- Anders, Andre (editor) "Handbook of Plasma Immersion Ion Implantation and Deposition" (2000) Wiley-Interscience ISBN 0-471-24698-0
- Bach, Hans and Dieter Krause (editors) "Thin Films on Glass" (2003) Springer-Verlag ISBN 3-540-58597-4
- Bunshah, Roitan F (editor). "Handbook of Deposition Technologies for Films and Coatings", second edition (1994)
- Glaser, Hans Joachim "Large Area Glass Coating" (2000) Von Ardenne Anlagentechnik GmbH ISBN 3-00-004953-3
- Glocker,and I. Shah (editors), "Handbook of Thin Film Process Technology", Vol.1&2 (2002) Institute of Physics ISBN 0-7503-0833-8 (2 vol. set)
- Mahan, John E. "Physical Vapor Deposition of Thin Films" (2000) John Wiley & Sons ISBN 0-471-33001-9
- Mattox, Donald M. "Handbook of Physical Vapor Deposition (PVD) Processing" (1998) Noyes Publications ISBN 0-8155-1422-0
- Mattox, Donald M. "The Foundations of Vacuum Coating Technology" (2003) Noyes Publications ISBN 0-8155-1495-6
- Mattox, Donald M. and Vivivenne Harwood Mattox (editors) "50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters" (2007), Society of Vacuum Coaters ISBN 978-1-878068-27-9
- Westwood, William D. "Sputter Deposition", AVS Education Committee Book Series, Vol. 2 (2003) AVS ISBN 0-7354-0105-5
- Willey, Ronald R. "Practical Monitoring and Control of Optical Thin Films (2007)" Willey Optical, Consultants ISBN 9780615181448
- Willey, Ronald R. "Practical Equipment, Materials, and Processes for Optical Thin Films" (2007) Willey Optical, Consultants ISBN 9780615143972
See also
References
- ↑ "Film Deposition Using Accelerated Ions" D.M. Mattox, Electrochemical Technology 2, 295, 1964