Iwasawa decomposition

In mathematics, the Iwasawa decomposition KAN of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.[1]

Definition

Then the Iwasawa decomposition of is

and the Iwasawa decomposition of G is

The dimension of A (or equivalently of ) is equal to the real rank of G.

Iwasawa decompositions also hold for some disconnected semisimple groups G, where K becomes a (disconnected) maximal compact subgroup provided the center of G is finite.

The restricted root space decomposition is

where is the centralizer of in and is the root space. The number is called the multiplicity of .

Examples

If G=SLn(R), then we can take K to be the orthogonal matrices, A to be the positive diagonal matrices, and N to be the unipotent group consisting of upper triangular matrices with 1s on the diagonal.

Non-Archimedean Iwasawa decomposition

There is an analogon to the above Iwasawa decomposition for a non-Archimedean field : In this case, the group can be written as a product of the subgroup of upper-triangular matrices and the (maximal compact) subgroup , where is the ring of integers of . [2]

See also

References

  1. Iwasawa, Kenkichi (1949). "On Some Types of Topological Groups". Annals of Mathematics. 50 (3): 507–558. doi:10.2307/1969548. JSTOR 1969548.
  2. Bump, Automorphic Forms and Representations, Prop. 4.5.2
This article is issued from Wikipedia - version of the 7/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.