Nucleoporin 85

NUP85
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases NUP85, Nup75, FROUNT, nucleoporin 85
External IDs MGI: 3046173 HomoloGene: 11755 GeneCards: NUP85
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez

79902

445007

Ensembl

ENSG00000125450

ENSMUSG00000020739

UniProt

Q9BW27

Q8R480

RefSeq (mRNA)

NM_001303276
NM_024844

NM_001002929

RefSeq (protein)

NP_001290205.1
NP_079120.1

NP_001002929.3

Location (UCSC) Chr 17: 75.21 – 75.24 Mb Chr 11: 115.56 – 115.58 Mb
PubMed search [1] [2]
Wikidata
View/Edit HumanView/Edit Mouse

Nucleoporin 85 (Nup85) is a protein that in humans is encoded by the NUP85 gene.[3][4]

Function

Bidirectional transport of macromolecules between the cytoplasm and nucleus occurs through nuclear pore complexes (NPCs) embedded in the nuclear envelope. NPCs are composed of subcomplexes, and NUP85 is part of one such subcomplex, Nup107-160.[4]

Model organisms

Model organisms have been used in the study of NUP85 function. A conditional knockout mouse line called Nup85tm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[5] Male and female animals underwent a standardized phenotypic screen[6] to determine the effects of deletion.[7][8][9][10] Additional screens performed: - In-depth immunological phenotyping[11]

References

  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Doxsey SJ, Stein P, Evans L, Calarco PD, Kirschner M (Feb 1994). "Pericentrin, a highly conserved centrosome protein involved in microtubule organization". Cell. 76 (4): 639–50. doi:10.1016/0092-8674(94)90504-5. PMID 8124707.
  4. 1 2 "Entrez Gene: NUP85 nucleoporin 85kDa".
  5. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  6. 1 2 "International Mouse Phenotyping Consortium".
  7. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750.
  8. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  9. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  10. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207Freely accessible. PMID 23870131.
  11. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading


This article is issued from Wikipedia - version of the 5/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.