IT Operations Analytics

In the fields of information technology and systems management, IT Operations Analytics (ITOA) is an approach or method applied to application software designed to retrieve, analyze and report data for IT operations. ITOA has been described as applying big data analytics to large datasets where IT operations can extract unique business insights.[1][2] In its Hype Cycle Report, Gartner rated the business impact of ITOA as being ‘high’, meaning that its use will see businesses enjoy significantly increased revenue or cost saving opportunities.[3] By 2017, Gartner predicts that 15% of enterprises will use IT operations analytics technologies to deliver intelligence for both business execution and IT operations.[2]

Definition

IT Operations Analytics (ITOA) (also known as Advanced Operational Analytics,[4] or IT Data Analytics[5]) technologies are primarily used to discover complex patterns in high volumes of often "noisy" IT system availability and performance data.[6] Forrester Research defines IT analytics as "The use of mathematical algorithms and other innovations to extract meaningful information from the sea of raw data collected by management and monitoring technologies."[7]

History

Operations Research as a modern discipline emerged from the Second World War to improve military efficiency and decision-making on the battlefield.[8] However, only with the emergence of machine learning tech in the early 2000s could an artificially intelligent operational analytics platform actually begin to engage in the high-level pattern recognition that could adequately serve business needs.[1] A critical catalyst towards ITOA development was the rise of Google, which pioneered a predictive analytics model that represented the first attempt to read into patterns of human behavior on the Internet. IT specialists then applied predictive analytics to the IT Industry, coming forward with platforms that can sift through data to generate insights without the need for human intervention.[1]

Due the mainstream embrace of cloud computing and the increasing desire for businesses to adopt more Big Data practices, the ITOA industry has grown significantly since 2010. A 2016 ExtraHop survey of large and mid-size corporations indicates that 65 percent of the businesses surveyed will seek to integrate their data silos either this year or the next.[9] The current goals of ITOA platforms are to improve the accuracy of their APM services, facilitate better integration with the data, and to enhance their predictive analytics capabilities.

Applications

ITOA systems tend to be used by IT operations teams, and Gartner describes five applications of ITOA systems:[10]

Types

In their Data Growth Demands a Single, Architected IT Operations Analytics Platform, Gartner Research describes five types of analytics technologies:[11]

Tools and ITOA Platforms

A number of vendors operate in the ITOA space:

See also

References

  1. 1 2 3 "The Time Has Come: Analytics Delivers for IT Operations". Data Center Journal. Retrieved 18 February 2013.
  2. 1 2 Fletcher, Colin (June 24, 2014), Apply IT Operations Analytics to Broader Datasets for Greater Business Insight, retrieved 29 September 2015
  3. "IT operations analytics: Changing the IT perspective". Information Age. Retrieved 13 March 2014.
  4. "Advanced Operations Analytics - What the Data Shows!". APM Digest. Retrieved 17 September 2014.
  5. "Quintica offers BMC's TrueSight". IT-Online. Retrieved 27 October 2014.
  6. "Hype Cycle for IT Operations Management, 2013". Gartner. Retrieved 23 July 2013.
  7. "Turn Big Data Inward With IT Analytics". Forrester Research. Retrieved 5 December 2012.
  8. Kirby, p. 117 Archived 27 August 2013 at the Wayback Machine.
  9. "The State of the ITOA Today" (PDF). ExtraHop. ExtraHop. Retrieved June 21, 2016.
  10. "IT Market Clock for IT Operations Management, 2013". Gartner. Retrieved 13 August 2013.
  11. "Data Growth Demands a Single, Architected IT Operations Analytics Platform". Gartner. Retrieved 30 September 2013.

External links

This article is issued from Wikipedia - version of the 11/24/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.