Overflow metabolism

Overflow metabolism refers to the seemingly wasteful strategy in which cells incompletely oxidize their growth substrate (e.g. glucose) instead of using the more energetically-efficient respiratory pathway, even in the presence of oxygen. As a result of employing this metabolic strategy, cells excrete (or "overflow") metabolites like lactate, acetate and ethanol. Incomplete oxidation of growth substrates yields less energy (e.g. ATP) than complete oxidation through respiration, and yet overflow metabolism - known as the Warburg effect in the context of cancer - occurs ubiquitously among fast-growing cells, including bacteria, fungi and mammalian cells.

Based on experimental studies of acetate overflow in Escheria coli, recent research has offered a general explanation for the association of overflow metabolism with fast growth. According to this theory, the enzymes required for respiration are more costly than those required for partial oxidation of glucose. That is, if the cell were to produce enough of these enzymes to support fast growth with respiratory metabolism, it would consume much more energy, carbon and nitrogen (per unit time) than supporting fast growth with an incompletely oxidative metabolism (e.g. fermentation). Given that cells have limited energy resources and fixed physical volume for proteins, there is thought to be a trade-off between efficient energy capture through central metabolism (i.e. respiration) and fast growth achieved through high central-metabolic fluxes (e.g. through fermentation as in yeast).

See also

References

This article is issued from Wikipedia - version of the 11/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.