Phonotactics
Phonotactics (from Ancient Greek phōnḗ "voice, sound" and taktikós "having to do with arranging")[1] is a branch of phonology that deals with restrictions in a language on the permissible combinations of phonemes. Phonotactics defines permissible syllable structure, consonant clusters, and vowel sequences by means of phonotactical constraints.
Phonotactic constraints are highly language specific. For example, in Japanese, consonant clusters like /st/ do not occur. Similarly, the clusters /kn/ and /ɡn/ are not permitted at the beginning of a word in Modern English but are in German and Dutch, and were permitted in Old and Middle English. In contrast, in some Slavic languages /l/ and /r/ are used as vowels.
Syllables have the following internal segmental structure:
Both onset and coda may be empty, forming a vowel-only syllable, or alternatively, the nucleus can be occupied by a syllabic consonant. Phonotactics is known to affect second language vocabulary acquisition.[2]
English phonotactics
The English syllable (and word) twelfths /twɛlfθs/ is divided into the onset /tw/, the nucleus /ɛ/, and the coda /lfθs/, and it can thus be described as CCVCCCC (C = consonant, V = vowel). On this basis it is possible to form rules for which representations of phoneme classes may fill the cluster. For instance, English allows at most three consonants in an onset, but among native words under standard accents (and excluding a few obscure learned words such as sphragistics), phonemes in a three-consonantal onset are limited to the following scheme:[3]
- /s/ + stop + approximant:
- /s/ + /m/ + /j/
- /s/ + /t/ + /ɹ/
- /s/ + /t/ + /j/ (not in most accents of American English)
- /s/ + /p/ + /j ɹ l/
- /s/ + /k/ + /j ɹ l w/
This constraint can be observed in the pronunciation of the word blue: originally, the vowel of blue was identical to the vowel of cue, approximately [iw]. In most dialects of English, [iw] shifted to [juː]. Theoretically, this would produce **[bljuː]. The cluster [blj], however, infringes the constraint for three-consonantal onsets in English. Therefore, the pronunciation has been reduced to [bluː] by elision of the [j].
Not all languages have this constraint: compare Spanish pliegue [ˈpljeɣe] or French pluie [plɥi].
In English, there exist fourteen constraints on phonotactics:[4]
- All syllables have a nucleus
- No geminates
- No onset /ŋ/
- No /h/ in the syllable coda
- No affricates in complex onsets
- The first consonant in a complex onset must be an obstruent
- The second consonant in a complex onset must not be a voiced obstruent
- If the first consonant in a complex onset is not an /s/, the second must be a liquid or a glide
- Every subsequence contained within a sequence of consonants must obey all the relevant phonotactic rules (the substring principle)[5]
- No glides in codas
- If there is a complex coda, the second consonant must not be /ŋ/, /ʒ/, or /ð/
- If the second consonant in a complex coda is voiced, so is the first
- Non-alveolar nasals must be homorganic with the next segment
- Two obstruents in the same coda must share voicing
In other languages
Fang
- Words can not start with [ɛ], [ɔ], [i] nor [u].
Italian
- All syllables must have at least one vowel.
Mandarin
- Every syllable must have a final which is a vowel or falling diphthong and can be ended by a semivowel (thus yielding a rising diphthong or triphthong), /n/ or /ŋ/.
Spanish
- Like Italian, all syllables must have at least one vowel.
Sonority Sequencing Principle
Segments of a syllable are universally distributed following what is called the Sonority Sequencing Principle (SSP), which states that, in any syllable, the nucleus has maximal sonority and that sonority decreases as you move away from the nucleus. Sonority is a measure of the amplitude of a speech sound. The particular ranking of each speech sound by sonority, called the sonority hierarchy, is language-specific, but, in its broad lines, hardly varies from a language to another,[6] which means all languages form their syllables in approximately the same way with regards to sonority.
To illustrate the SSP, the voiceless alveolar fricative [s] is lower on the sonority hierarchy than the alveolar lateral approximant [l], so the combination /sl/ is permitted in onsets and /ls/ is permitted in codas, but /ls/ is not allowed in onsets and /sl/ is not allowed in codas. Hence slips /slɪps/ and pulse /pʌls/ are possible English words while *lsips and *pusl are not.
The SSP expresses a very strong cross-linguistic tendency, however, it does not account for the patterns of all complex syllable margins. It may be violated in two ways: the first occurs when two segments in a margin have the same sonority, which is known as a sonority plateau. Such margins are found in a few languages, including English, as in the words sphinx and fact.
The second instance of violation of the SSP is when a peripheral segment of a margin has a higher sonority than a segment closer to the nucleus. These margins are known as reversals, and occur in some languages including English (steal [stiːɫ], bets /bɛts/) or French (dextre /dɛkstʁ/, strict /stʁikt/).[7]
Notes and references
Notes
- ↑ φωνή, τακτικός. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
- ↑ Laufer 1997.
- ↑ Crystal, David (2003). The Cambridge Encyclopedia of the English Language. Cambridge University Press. p. 243. ISBN 978-0-521-53033-0.
- ↑ Harley, Heidi (2003). English Words: A Linguistic Introduction. Wiley-Blackwell. pp. 58–69. ISBN 0631230327.
- ↑ Harley, Heidi (2010). Understanding Morphology. Hodder Education. p. 214. ISBN 0340950013.
- ↑ Jany, Carmen; Gordon, Matthew; Nash, Carlos M; Takara, Nobutaka (2007-01-01). "HOW UNIVERSAL IS THE SONORITY HIERARCHY?: A CROSS-LINGUISTIC ACOUSTIC STUDY". ResearchGate.
- ↑ Carlisle, Robert S. (2001-06-01). "Syllable structure universals and second language acquisition". ResearchGate. 1 (1). doi:10.6018/ijes.1.1.47581. ISSN 1578-7044.
General references
- Bailey, Todd M. & Hahn, Ulrike. 2001. Determinants of wordlikeness: Phonotactics or lexical neighborhoods? Journal of Memory and Language 44: 568–591.
- Coleman, John S. & Pierrehumbert, Janet. 1997. Stochastic phonological grammars and acceptability. Computational Phonology 3: 49–56.
- Frisch, S.; Large, N. R.; & Pisoni, D. B. 2000. Perception of wordlikeness: Effects of segment probability and length on processing non-words. Journal of Memory and Language 42: 481–496.
- Gathercole, Susan E. & Martin, Amanda J. 1996. Interactive processes in phonological memory. In Cognitive models of memory, edited by Susan E. Gathercole. Hove, UK: Psychology Press.
- Hammond, Michael. 2004. Gradience, phonotactics, and the lexicon in English phonology. International Journal of English Studies 4: 1–24.
- Gaygen, Daniel E. 1997. Effects of probabilistic phonotactics on the segmentation of continuous speech. Doctoral dissertation, University at Buffalo, Buffalo, NY.
- Greenberg, Joseph H. & Jenkins, James J. 1964. Studies in the psychological correlates of the sound system of American English. Word 20: 157–177.
- Laufer, B. (1997). "What's in a word that makes it hard or easy? Some intralexical factors that affect the learning of words". Vocabulary: Description, Acquisition and Pedagogy. Cambridge: Cambridge University Press. pp. 140–155. ISBN 9780521585514.
- Luce, Paul A. & Pisoni, Daniel B. 1998. Recognizing spoken words: The neighborhood activation model. Ear and Hearing 19: 1–36.
- Newman, Rochelle S.; Sawusch, James R.; & Luce, Paul A. 1996. Lexical neighborhood effects in phonetic processing. Journal of Experimental Psychology: Human Perception and Performance 23: 873–889.
- Ohala, John J. & Ohala, M. 1986. Testing hypotheses regarding the psychological manifestation of morpheme structure constraints. In Experimental phonology, edited by John J. Ohala & Jeri J. Jaeger, 239–252. Orlando, FL: Academic Press.
- Pitt, Mark A. & McQueen, James M. 1998. Is compensation for coarticulation mediated by the lexicon? Journal of Memory and Language 39: 347–370.
- Storkel, Holly L. 2001. Learning new words: Phonotactic probability in language development. Journal of Speech, Language, and Hearing Research 44: 1321–1337.
- Storkel, Holly L. 2003. Learning new words II: Phonotactic probability in verb learning. Journal of Speech, Language, and Hearing Research 46: 1312–1323.
- Vitevitch, Michael S. & Luce, Paul A. 1998. When words compete: Levels of processing in perception of spoken words. Psychological Science 9: 325–329.
- Vitevitch, Michael S. & Luce, Paul A. 1999. Probabilistic phonotactics and neighborhood activation in spoken word recognition. Journal of Memory and Language 40: 374–408.
- Vitevitch, Michael S.; Luce, Paul A.; Charles-Luce, Jan; & Kemmerer, David. 1997. Phonotactics and syllable stress: Implications for the processing of spoken nonsense words. Language and Speech 40: 47–62.
- Vitevitch, Michael S.; Luce, Paul A.; Pisoni, David B.; & Auer, Edward T. 1999. Phonotactics, neighborhood activation, and lexical access for spoken words. Brain and Language 68: 306–311.