Pirinixic acid
Identifiers | |
---|---|
| |
CAS Number | 50892-23-4 |
PubChem (CID) | 5694 |
IUPHAR/BPS | 2666 |
ChemSpider | 5492 |
UNII | 86C4MRT55A |
ChEMBL | CHEMBL295416 |
ECHA InfoCard | 100.150.489 |
Chemical and physical data | |
Formula | C14H14ClN3O2S |
Molar mass | 323.8 g/mol |
3D model (Jmol) | Interactive image |
| |
|
Pirinixic acid is a peroxisome proliferator-activated receptor alpha (PPARα) agonist that is under experimental investigation for prevention of severe cardiac dysfunction, cardiomyopathy and heart failure as a result of lipid accumulation within cardiac myocytes.[1] Treatment is primarily aimed at individuals with an adipose triglyceride lipase (ATGL) enzyme deficiency or mutation[2] because of the essential PPAR protein interactions with free fatty acid monomers derived from the ATGL catalyzed lipid oxidation reaction.[3] It was discovered as WY-14,643 in 1974.[4]
Adipose triglyceride lipase (ATGL)
Adipose triglyceride lipase (ATGL), an enzyme that catalyzes the rate limiting hydrolysis step of triglycerides[5] in the triacylglycerol lipolysis cascade, is expressed predominantly in adipose tissue, but is also found in lesser amounts within cardiac and skeletal muscle.[6] Its function is to initiate the breakdown of intracellular triglycerides into fatty acid monomers.[7] Individuals deficient in the ATGL enzyme are at higher risk for cardiac dysfunction and premature death because of increased size and accumulation of lipid droplets within cardiac myocytes.[8]
Peroxisome proliferator activated receptors (PPARs)
PPARs are a family of ligand activated receptors which include PPARα, PPARδ and PPARγ subtypes that are expressed in varying amounts in nuclear membranes of in different tissues.[9] PPAR activation occurs with free fatty acid binding, or fatty acid derivative ligands that have been broken down via the triacylglycerol lipolysis cascade.[10] Activated PPARs act as transcription factors to increase expression of specific genes within cells.[11] PPARα, a PPAR subtype, controls the expression of genes involved in cardiac fatty acid utilization,[12][13] and its activation, stimulates free fatty acid oxidation by increasing mitochondrial free fatty acid uptake and oxidation via two enzymes: carnitine palmitoyltransferase I (M-CPT I) and medium-chain acyl-CoA dehydrogenase (MCAD).[14]
Pre-clinical trials
ATGL deficient mice administered pirinixic acid demonstrated reduced cardiac hypertrophy and improved cardiac function.[15] These data demonstrate that genes induced by PPARα activation via free fatty acids from ATGL-dependent reactions are essential for the maintenance of normal cardiac function.[16] As PPARα activation triggers the expression of genes involved in lipid metabolism (M-CPTI I and MCAD),[17] treating the mice with pirinixic acid may improve cardiac myocyte energy supply by increasing mitochondrial fatty acid β-oxidation to prevent severe cardiac dysfunction as a result of lipid accumulation .
References
- ↑ Wölkart, G.; Schrammel, A.; Dörffe, K.; Kaemmerle, G.; Zechner, R.; Mayer, B. (2012). "Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist". British Journal of Pharmacology. 165 (2): 380–389. doi:10.1111/j.1476-5381.2011.01490.x.
- ↑ Wölkart, G.; Schrammel, A.; Dörffe, K.; Kaemmerle, G.; Zechner, R.; Mayer, B. (2012). "Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist". British Journal of Pharmacology. 165 (2): 380–389. doi:10.1111/j.1476-5381.2011.01490.x.
- ↑ Wölkart, G.; Schrammel, A.; Dörffe, K.; Kaemmerle, G.; Zechner, R.; Mayer, B. (2012). "Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist". British Journal of Pharmacology. 165 (2): 380–389. doi:10.1111/j.1476-5381.2011.01490.x.
- ↑ Santilli, A. A.; Scotese, A. C.; Tomarelli, R. M. (1974). "A potent antihypercholesterolemic agent: [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14643)". Experientia. 30 (10): 1110–1. doi:10.1007/BF01923636. PMID 4435102.
- ↑ Zimmermann, R.; Strauss, J.G.; Haemmerle, G.; Schoiswohl, G.; Birner-Gruenberger, R.; Riederer, M. (2004). "Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.". Science. 306: 1383–1386. doi:10.1126/science.1100747. PMID 15550674.
- ↑ Zimmermann, R.; Strauss, J.G.; Haemmerle, G.; Schoiswohl, G.; Birner-Gruenberger, R.; Riederer, M. (2004). "Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.". Science. 306: 1383–1386. doi:10.1126/science.1100747. PMID 15550674.
- ↑ Wölkart, G.; Schrammel, A.; Dörffe, K.; Kaemmerle, G.; Zechner, R.; Mayer, B. (2012). "Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist". British Journal of Pharmacology. 165 (2): 380–389. doi:10.1111/j.1476-5381.2011.01490.x.
- ↑ Haemmerle, G.; Lass, A.; Zimmermann, R.; Gorkiewicz, G.; Meyer, C.; Rozman, J. (2006). "Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase.". Science. 312: 734–737. doi:10.1126/science.1123965.
- ↑ Braissant, O.; Foufelle, F.; Scotto, C.; Dauca, M.; Wahli, W. (1996). "Differential expression of peroxisome proliferator-activated receptors (PPARs):tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat.". Endocrinology. 137 (1): 354–366. doi:10.1210/endo.137.1.8536636. PMID 8536636.
- ↑ Wölkart, G.; Schrammel, A.; Dörffe, K.; Kaemmerle, G.; Zechner, R.; Mayer, B. (2012). "Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist". British Journal of Pharmacology. 165 (2): 380–389. doi:10.1111/j.1476-5381.2011.01490.x.
- ↑ Djouadi, F.; Brandt, J.; Weinheimer, J.; Leone, T.C.; Gonzalez, J.; Kelly, D.P. (1999). "The role of peroxisome proliferator-activated receptor α (PPARα)in the control of cardiac lipid metabolism". Prostaglandins, Leukotrienes and Essential Fatty Acids. 60: 339–343. doi:10.1016/s0952-3278(99)80009-x.
- ↑ Djouadi, F.; Brandt, J.; Weinheimer, J.; Leone, T.C.; Gonzalez, J.; Kelly, D.P. (1999). "The role of peroxisome proliferator-activated receptor α (PPARα)in the control of cardiac lipid metabolism". Prostaglandins, Leukotrienes and Essential Fatty Acids. 60: 339–343. doi:10.1016/s0952-3278(99)80009-x.
- ↑ Fruchard, J.; Duriez, P.; Steals, B. (1999). "Peroxisome Proliferator-Activated Receptor Alpha activators regulate genes governming lipoprotein metabolism, vascular inflammation and atherosclerosis". Current Opinion in Lipidology. 10 (3): 245–257. doi:10.1097/00041433-199906000-00007.
- ↑ Djouadi, F.; Brandt, J.; Weinheimer, J.; Leone, T.C.; Gonzalez, J.; Kelly, D.P. (1999). "The role of peroxisome proliferator-activated receptor α (PPARα)in the control of cardiac lipid metabolism". Prostaglandins, Leukotrienes and Essential Fatty Acids. 60: 339–343. doi:10.1016/s0952-3278(99)80009-x.
- ↑ Wölkart, G.; Schrammel, A.; Dörffe, K.; Kaemmerle, G.; Zechner, R.; Mayer, B. (2012). "Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist". British Journal of Pharmacology. 165 (2): 380–389. doi:10.1111/j.1476-5381.2011.01490.x.
- ↑ Wölkart, G.; Schrammel, A.; Dörffe, K.; Kaemmerle, G.; Zechner, R.; Mayer, B. (2012). "Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist". British Journal of Pharmacology. 165 (2): 380–389. doi:10.1111/j.1476-5381.2011.01490.x.
- ↑ Djouadi, F.; Brandt, J.; Weinheimer, J.; Leone, T.C.; Gonzalez, J.; Kelly, D.P. (1999). "The role of peroxisome proliferator-activated receptor α (PPARα)in the control of cardiac lipid metabolism". Prostaglandins, Leukotrienes and Essential Fatty Acids. 60: 339–343. doi:10.1016/s0952-3278(99)80009-x.