Plesiastrea
Plesiastrea versipora | |
---|---|
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Cnidaria |
Class: | Anthozoa |
Order: | Scleractinia |
Family: | incertae sedis |
Genus: | Plesiastrea Milne Edwards & Haime, 1848 |
Species: | P. versipora |
Binomial name | |
Plesiastrea versipora Lamarck, 1816 | |
Plesiastrea versipora is an encrusting coral found from Africa through the Indian Ocean, Southeast Asia, Australasia and the Pacific Ocean.[2] It is of interest because of its ability to thrive in both tropical and temperate environments, and to grow massive.[3]
Existing massive colonies of P. versipora can be long lived, and so analysis of their internal composition allows deducing the climatic records of past decades and centuries, at localities where the corals grow.[2] Being the only coral genus in temperate waters that is capable of growing massive (up to a metre in thickness), P. versipora is a valuable indicator of climatic records of temperate seas.[2]
Plesiastrea versipora is also a model for communication between corals and their zooxanthellae. The substances that communicate to the symbiont are host-generated soluble compounds which can either signal the release of photosynthetic products (mainly glycerol) by the zooxanthellae,[4] or can inhibit photosynthesis.[5][6] This phenomenon may potentially be generalised to other coral genera, as identical Symbiodinium strains often occur in several coral host genera. P. versipora is the type host for a newly described minor symbiont Chromera velia,[7] which is present in small numbers in a host P. versipora coral colony, compared to the dominant Symbiodinium which is present in large numbers, to the point where C. velia cells may be barely detectable in the host except by culturing.
The host P. versipora reproduces sexually, with larvae obtaining symbiotic algae from the environment,[8] though anecdotal evidence shows some symbionts may also be a transmitted via the eggs,[9] indicating transmission may be mixed in this host species.
The species adopts a range of colours, being host pigments that protect the coral from ultraviolet radiation.[10][11] Colonies often occur close to one another, and contact one another. The range of colour morphs of P. versipora is broad and so it is very often obvious by their colours where one colony begins and another ends.
No other species are recognised in the genus Plesiastrea,[12] since P. devantieri (Veron, 2000)[13] was reassigned to the genus Astrea by Huang et al. in 2014.[14] While P. versipora is commonly found and even abundant,[15] A. devantieri is considered threatened.[16]
References
- ↑ L. DeVantier; G. Hodgson; D. Huang; O. Johan; A. Licuanan; D. O. Obura; C. Sheppard; M. Syahrir & E. Turak (2014). "Plesiastrea versipora". IUCN Red List of Threatened Species. Version 2014.3. International Union for Conservation of Nature. Retrieved 8 March 2015.
- 1 2 3 S. N. Burgess; M. T. McCulloch; G. E. Mortimer & T. M. Ward (2009). "Structure and growth rates of the high-latitude coral: Plesiastrea versipora". Coral Reefs. 28 (4): 1005–1015. doi:10.1007/s00338-009-0533-5.
- ↑ "Plesiastrea versipora". Australian Institute of Marine Science. Retrieved 14 September 2014.
- ↑ Adrienne Grant; Julie People; Marc Rémond; Sarah Frankland & Rosalind Hinde (2013). "How a host cell signalling molecule modifies carbon metabolism in symbionts of the coral Plesiastrea versipora". FEBS Journal. 280 (9): 2085–2096. doi:10.1111/febs.12233. PMID 23490026.
- ↑ Grant AJ, Trautman DA, Menz I, Hinde R (2006). "Separation of two cell signalling molecules from a symbiotic sponge that modify algal carbon metabolism". Biochem. Biophys. Res. Commun. 348: 92–8. doi:10.1016/j.bbrc.2006.07.042. PMID 16876109.
- ↑ Hydrobiologia. 461: 63–69. doi:10.1023/A:1012777502179 http://link.springer.com/article/10.1023/A%3A1012777502179. Missing or empty
|title=
(help) - ↑ Robert B. Moore; Miroslav Oborník; Jan Janouškovec; Tomáš Chrudimský; Marie Vancová; David H. Green; Simon W. Wright; Noel W. Davies; Christopher J. S. Bolch; Kirsten Heimann; Jan Šlapeta; Ove Hoegh-Guldberg; John M. Logsdon & Dee A. Carter (2008). "A photosynthetic alveolate closely related to apicomplexan parasites". Nature. 451: 959–963. doi:10.1038/nature06635. PMID 18288187.
- ↑ http://researchonline.jcu.edu.au/38702/1/Madsen%20et%20al%202014%20SEDOA%20Plesiastrea%20reprod.pdf
- ↑ http://onlinelibrary.wiley.com/enhanced/doi/10.1111/febs.12233/
- ↑ Anya Salih; Anthony Larkum; Guy Cox; Michael Kühl & Ove Hoegh-Guldberg (2000). "Fluorescent pigments in corals are photoprotective" (PDF preprint). Nature. 408 (6814): 850–853. doi:10.1038/35048564. PMID 11130722.
- ↑ http://www.advancedaquarist.com/2010/2006/12/aafeature2
- ↑ Bert Hoeksema (2014). "Plesiastrea Milne Edwards & Haime, 1848". World Register of Marine Species. Retrieved 8 March 2015.
- ↑ http://coral.aims.gov.au/factsheet.jsp?speciesCode=0932
- ↑ Bert Hoeksema (2014). "Astrea devantieri (Veron, 2000)". World Register of Marine Species. Retrieved 8 March 2015.
- ↑ http://www.arkive.org/small-knob-coral/plesiastrea-versipora/
- ↑ http://www.arkive.org/plesiastrea-coral/plesiastrea-devantieri/