Quasi-separated morphism

In algebraic geometry, a morphism of schemes f from X to Y is called quasi-separated if the diagonal map from X to X×YX is quasi-compact (meaning that the inverse image of any quasi-compact open set is quasi compact). A scheme X is called quasi-separated if the morphism to Spec Z is quasi-separated. Quasi-separated algebraic spaces and algebraic stacks and morphisms between them are defined in a similar way, though some authors include the condition that X is quasi-separated as part of the definition of an algebraic space or algebraic stack X. Quasi-separated morphisms were introduced by Grothendieck (1964, 1.2.1) as a generalization of separated morphisms.

The concept of quasi-separated morphisms does not usually appear in introductory courses on algebraic geometry, because all separated morphisms (and all morphisms of Noetherian schemes) are automatically quasi-separated. However quasi-separated morphisms are more important for algebraic spaces and algebraic stacks, where many natural morphisms are quasi-separated but not separated.

The condition that a morphism is quasi-separated often occurs together with the condition that it is quasi-compact.

Examples

References

This article is issued from Wikipedia - version of the 5/14/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.