RFID on metal
RFID on metal (abbreviated to ROM) are radio-frequency identification (RFID) tags which perform a specific function when attached to metal objects. The ROM tags overcome some of the problems traditional RFID tags suffer when near metal, such as detuning and reflecting of the RFID signal, which can cause poor tag read range, phantom reads, or no read signal at all.
The RFID-on-metal tags are designed to compensate for the effects of metal. There are several tag design methods to create ROM tags. The original method was to provide a spacer to shield the tag antenna from the metal, creating bigger tags. New techniques focus on specialized antenna design that utilizes the metal interference and signal reflection for longer read range than similar sized tags attached to non-metal objects.[1] RFID-on-metal transponders will continue to create new opportunities for users in a wide range of asset tracking and broader industrial applications. The main applications are asset tracking on servers and laptops in IT data centers, industrial manufacturing quality control and manufacturing, oil and gas pipeline maintenance, and gas cylinders.[2] The technology is evolving to allow transponders to be embedded in metal. The capability allows manufacturers to track small metal items from cradle to grave. The main focus for RFID inside metal is tool tracking, weapon tracking, and medical device quality control.
See also
References
- ↑ Drew Nathanson, Tom Wimmer, 2009 RFID transponders, Inlays, IC s, ITU-T Lighthouse Technical Paper. May 2009. http://www.vdcresearch.com/_Documents/executivebrief/wp-attachment-2526.pdf.
- ↑ How RFID can read in metal XERAFY. http://www.xerafy.com/main/sites/default/files/Can_RFID_Tags_Work_inside_Metalv2_Talton.pdf, 2010
External links
- "2010 Alien Conference Wayne Laffite The RFID ROM Tagging Challenge". SlideShare Inc.
- http://activeidentity.net/partners/technology-partners/
- Federal Office for Information Security
- Security Aspects and Prospective Applications of RFID Systems, 2004
- Right Here, Right Now, RFID, June 9, 2010