Rsl testing

Rising Step Load Testing (or RSL testing) is a testing system that can apply loads in tension or bending. It was specifically designed to conduct the accelerated ASTM F1624[1] step-modified, slow strain rate tests on a variety of test coupons or structural components. It can also function to conduct conventional ASTM E8 tensile tests; ASTM F519 200-hr Sustained Load Tests with subsequent programmable step loads to rupture for increased reliability; and ASTM G129 Slow Strain Rate Tensile tests.

Testing

The RSL Testing System can be applied to all of the specimen geometries in ASTM F519, including Notched Round Tensile Bars, Notched C-Rings, and Notched Square Bars. Product testing of actual hardware can also be conducted, such as with fasteners. Taking mechanical advantage of by testing in bending allows 1"Diameter bolts to be tested with only a 1-kip load cell.

Test Precision

The RSL Test Method has been demonstrated as a valuable tool in the testing of high-performance materials for determining susceptibility to hydrogen embrittlement. This test is dependent upon the test machine’s capability to provide a profile with incremental increases in the applied stress as a function of time. It is imperative that the load increases do not overshoot the next elevation in applied stress. The predominant type of test equipment for applying loads on test specimens employ servo/hydraulic systems. For most applications, these systems are quite satisfactory, however when they have been used to perform the precision required in controlling the applied stress in an RSL test, they have not demonstrated adequate stability. It is very difficult for a servo/hydraulic system to approach a desired level of load without some mild excursions on either side of the desired stress level. That variance is not adequate for certifiable RSL threshold testing, because the noise level sacrifices sensitivity in detecting the onset of subcritical crack growth by load drop measurements.

Crack Sensitivity Detection

Precision in controlling the load allows for greater sensitivity in measuring crack extension via load drop and compliance correlation than obtainable with high-voltage electrical resistivity measurements and eliminates the need for clip gages. This capability allows for precise electronic detection of the maximum load required for Crack Tip Opening Displacement calculations of Fracture Toughness and precise detection of the onset of crack growth required for measurement of the threshold stress for hydrogen embrittlement, environmental or stress corrosion cracking.

Benefits

One of the major advantages of the RSL Test Method is the time in which valid and reproducible results can be obtained. One example is the long used Sustained Load Test of notched round bar tensile specimens found in ASTM F 519. In this test, the exposed test specimens are subjected to a load equal to 75% of the Fracture Strength and held for 200 hours. If the specimen does not break, the specimen has passed. If it fractures prior to the 200 hours then it has failed. The RSL test method can provide the same information in less than two days and will also give a percentage of Fracture Strength value which provides very valuable additional information. Similarly, an ASTM E1681 KIscc determination can take 12 specimens and up to 14-months because of the necessary run out times to confirm the threshold level. Using the RSL Test Method can provide the same results with 5-coupons in five to seven days.

References

  1. ASTM F1624 - 09 "Standard Test Method for Measurement of Hydrogen Embrittlement Threshold in Steel by the Incremental Step Loading Technique", American Society for Testing and Materials, 2009.
This article is issued from Wikipedia - version of the 2/15/2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.