Siegel identity
In mathematics, Siegel's identity refers to one of two formulae that are used in the resolution of Diophantine equations.
Statement
The first formula is
The second is
Application
The identities are used in translating Diophantine problems connected with integral points on hyperelliptic curves into S-unit equations.
See also
References
- Baker, Alan (1975). Transcendental Number Theory. Cambridge University Press. p. 40. ISBN 0-521-20461-5. Zbl 0297.10013.
- Baker, Alan; Wüstholz, Gisbert (2007). Logarithmic Forms and Diophantine Geometry. New Mathematical Monographs. 9. Cambridge University Press. p. 53. ISBN 978-0-521-88268-2. Zbl 1145.11004.
- Kubert, Daniel S.; Lang, Serge (1981). Modular Units. Grundlehren der Mathematischen Wissenschaften. 244. ISBN 0-387-90517-0.
- Lang, Serge (1978). Elliptic Curves: Diophantine Analysis. Grundlehren der mathematischen Wissenschaften. 231. Springer-Verlag. ISBN 0-387-08489-4.
- Smart, N. P. (1998). The Algorithmic Resolution of Diophantine Equations. London Mathematical Society Student Texts. 41. Cambridge University Press. pp. 36–37. ISBN 0-521-64633-2.
This article is issued from Wikipedia - version of the 6/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.