Smith space
In functional analysis and related areas of mathematics, Smith space is a complete compactly generated locally convex space having a compact set which absorbs every other compact set (i.e. for some ).
Smith spaces are named after M. F. Smith,[1] who introduced them as duals to Banach spaces in some versions of duality theory for topological vector spaces. All Smith spaces are stereotype and are in the stereotype duality relations with Banach spaces:[2][3]
- for any Banach space its stereotype dual space[4] is a Smith space,
- and vice versa, for any Smith space its stereotype dual space is a Banach space.
Notes
- ↑ M. F. Smith (1952).
- ↑ S.S.Akbarov (2003).
- ↑ S.S.Akbarov (2009).
- ↑ The stereotype dual space to a locally convex space is the space of all linear continuous functionals endowed with the topology of uniform convergence on totally bounded sets in .
References
- Schaefer, Helmuth H. (1966). Topological vector spaces. New York: The MacMillan Company. ISBN 0-387-98726-6.
- Robertson, A.P.; Robertson, W.J. (1964). Topological vector spaces. Cambridge Tracts in Mathematics. 53. Cambridge University Press.
- Smith, M.F. (1952). "The Pontrjagin duality theorem in linear spaces". Annals of Mathematics. 56 (2): 248–253. doi:10.2307/1969798. JSTOR 1969798.
- Akbarov, S.S. (2003). "Pontryagin duality in the theory of topological vector spaces and in topological algebra". Journal of Mathematical Sciences. 113 (2): 179–349. doi:10.1023/A:1020929201133.
- Akbarov, S.S. (2009). "Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity". Journal of Mathematical Sciences. 162 (4): 459–586. doi:10.1007/s10958-009-9646-1. (subscription required (help)).
This article is issued from Wikipedia - version of the 5/18/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.