Strong RSA assumption
In cryptography, the strong RSA assumption states that the RSA problem is intractable even when the solver is allowed to choose the public exponent e (for e ≥ 3). More specifically, given a modulus N of unknown factorization, and a ciphertext C, it is infeasible to find any pair (M, e) such that C ≡ M e mod N.
The strong RSA assumption was first used for constructing signature schemes provably secure against existential forgery without resorting to the random oracle model.
References
- Niko Barić and Birgit Pfitzmann. Collision-free accumulators and failstop signature schemes without trees. In Advances in Cryptology— EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 480–494. Springer-Verlag, 1997.
- Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations. In Burton S. Kaliski Jr., editor, Proc. CRYPTO ’97, volume 1294 of LNCS, pages 16–30. Springer-Verlag, 1997.
- Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA assumption. ACM Transactions on Information and System Security, 3(3):161–185, 2000. pdf file
- Ronald L. Rivest and Burt Kaliski. RSA Problem. pdf file
This article is issued from Wikipedia - version of the 8/13/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.