Struve function

Graph of for

In mathematics, Struve functions Hα(x), are solutions y(x) of the non-homogeneous Bessel's differential equation:

introduced by Hermann Struve (1882). The complex number α is the order of the Struve function, and is often an integer. The modified Struve functions Lα(x) are equal to ieiαπ/2Hα(ix).

Definitions

Since this is a non-homogeneous equation, solutions can be constructed from a single particular solution by adding the solutions of the homogeneous problem. In this case, the homogeneous solutions are the Bessel functions, and the particular solution may be chosen as the corresponding Struve function.

Power series expansion

Struve functions, denoted as Hα(x) have the following power series form

where Γ(z) is the gamma function.

The modified Struve function, denoted as Lν(z) have the following power series form

Integral form

Another definition of the Struve function, for values of α satisfying Re(α) > −1/2, is possible using an integral representation:

Asymptotic forms

For small x, the power series expansion is given above.

For large x, one obtains:

where Yα(x) is the Neumann function.

Properties

The Struve functions satisfy the following recurrence relations:

Relation to other functions

Struve functions of integer order can be expressed in terms of Weber functions En and vice versa: if n is a non-negative integer then

Struve functions of order n + 1/2 where n is an integer can be expressed in terms of elementary functions. In particular if n is a non-negative integer then

where the right hand side is a spherical Bessel function.

Struve functions (of any order) can be expressed in terms of the generalized hypergeometric function 1F2 (which is not the Gauss hypergeometric function 2F1):

References

External links

This article is issued from Wikipedia - version of the 9/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.