Triisopropylamine
Names | |
---|---|
Preferred IUPAC name
N,N-Di(propan-2-yl)propan-2-amine | |
Other names
Tri(propan-2-yl)amine (Triisopropyl)amine | |
Identifiers | |
3424-21-3 | |
3D model (Jmol) | Interactive image |
ChemSpider | 55785 |
ECHA InfoCard | 100.020.289 |
EC Number | 222-317-5 |
PubChem | 61924 |
UNII | Y67CF9Z56L |
| |
| |
Properties | |
C9H21N | |
Molar mass | 143.27 g·mol−1 |
Appearance | Colorless liquid |
Odor | Ichtyal, ammoniacal |
Density | 0.752 g/cm3 |
Boiling point | 47 °C (117 °F; 320 K) at 1.9 kPa |
Related compounds | |
Related amines |
|
Related compounds |
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Triisopropylamine is an organic chemical compound consisting of three isopropyl groups bound to a central nitrogen atom.[1][2] As a hindered tertiary amine, it can be used as a non-nucleophilic base and as a stabilizer for polymers; however, its applications are limited by its relatively high cost and difficult synthesis.
Structure
Triisopropylamine is notable as being the most sterically crowded amine currently known. The even more crowded tri-tert-butyl-amine (tBu3N) has never been successfully synthesized, although the existence of 2,2,4,4-Tetramethyl-3-t-butyl-pentane-3-ol (tBu3COH) implies that it may be possible.
In the early 1990s, theoretical studies and electron diffraction analysis of the 3D structure of the molecule, in the gas phase or in non-polar solvents, indicated that the bonds between the nitrogen atom and the three carbon atoms were nearly coplanar in the ground state, instead of forming a trigonal pyramid as in simpler amines.[3][4] The average C-N-C angle was claimed to be 119.2°,[2] much closer to the 120° of the flat configuration than to the 111.8° of trimethylamine. This peculiarity was attributed to steric hindrance by the bulky isopropyl radicals. However, in 1998 X-ray diffraction analysis of the crystallized solid showed that the C3N core is actually pyramidal, with the N atom lying approximately 0.28 Å off the carbons' plane (whereas in trimethylamine the distance is about 0.45 Å). However the researchers could not rule out the crystal field effect as the cause of the asymmetry.[5]
The C-C-C planes of the isopropyl groups are slightly tilted (about 5°) relative to the threefold symmetry axis of the C3N core.[3][5][6]
Preparation
Steric effects make triisopropylamine difficult to synthesise and unlike less hindered tertiary amines (such as triethylamine) it cannot be produced by the alkylation of ammonia with alcohol; attempts to do so stall at diisopropylamine. It can be prepared from diisopropylamine by a procedure developed by Bock and others:[2]
References
- ↑ G. Graner, E. Hirota, T. Iijima, K. Kuchitsu, D. A. Ramsay, J. Vogt and N. Vogt (2003), C9H21N, Triisopropylamine. In Molecules Containing Five or More Carbon Atoms, volume 25D of the series Landolt-Börnstein - Group II Molecules and Radicals. Springer-Verlag. ISBN 978-3-540-42860-2; DOI 10.1007/10735542_789.
- 1 2 3 Hans Bock; Ilka Goebel; Zdenek Havlas; Siegfried Liedle; Heinz Oberhammer (1991). "Triisopropylamine: A Sterically Overcrowded Molecule with a Flattened NC3 Pyramid and a "p-Type" Nitrogen Electron Pair". Angew. Chem. Int. Ed. 30 (2): 187–190. doi:10.1002/anie.199101871.
- 1 2 Arthur M. Halpern; B. R. Ramachandran (1992). "Photophysics of a sterically crowded tertiary-saturated amine: triisopropylamine". J. Phys. Chem. 96 (24): 9832–9839. doi:10.1021/j100203a047.
- ↑ Christoph Kölmel, Christian Ochsenfeld & Reinhart Ahlrichs (1992). "An ab initio investigation of structure and inversion barrier of triisopropylamine and related amines and phosphines". Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta). 82 (3–4).
- 1 2 Boese, R.; Bläser, D.; Antipin, M. Y.; Chaplinski, V.; de Meijere, A. (1998). "Non-planar structures of Et3N and Pri3N: a contradiction between the X-ray, and NMR and electron diffraction data for Pri3N". Chem. Commun. (7): 781–782. doi:10.1039/a708399h.
- ↑ Yang M, Albrecht-Schmitt T, Cammarata V, Livant P, Makhanu DS, Sykora R, Zhu W (2009). "Trialkylamines more planar at nitrogen than triisopropylamine in the solid state". J. Org. Chem. 74 (7): 2671–8. doi:10.1021/jo802086h. PMID 19323571.