Argyre quadrangle

Argyre quadrangle

Map of Argyre quadrangle from Mars Orbiter Laser Altimeter (MOLA) data. The highest elevations are red and the lowest are blue.
Coordinates 47°30′S 30°00′W / 47.5°S 30°W / -47.5; -30Coordinates: 47°30′S 30°00′W / 47.5°S 30°W / -47.5; -30
Image of the Argyre Quadrangle (MC-25). The west-central part contains the Argyre basin, defined by a rim of rugged mountain blocks that surrounds a nearly circular expanse of light-colored plains. The large basin is surrounded by heavily cratered highlands.

The Argyre quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Argyre quadrangle is also referred to as MC-26 (Mars Chart-26).[1] It contains Argyre Planitia and part of Noachis Terra.

The Argyre quadrangle covers the area from 0° to 60° west longitude and from 30° to 65° south latitude on Mars. It contains Galle crater, which resembles a smiley face and the Argyre basin, a giant impact crater. Research published in the journal Icarus has found pits in Hale Crater that are caused by hot ejecta falling on ground containing ice. The pits are formed by heat forming steam that rushes out from groups of pits simultaneously, thereby blowing away from the pit ejecta.[2] Many steep slopes in this quadrangle contain gullies, which are believed to have formed by relatively recent flows of water.

Martian gullies

Gullies are common in some latitude bands on Mars. Usually, martian gullies are found on the walls of craters or troughs, but Charitum Montes, a group of mountains, has gullies in some areas (See the image below).

Gullies occur on steep slopes, especially on the walls of craters. Gullies are believed to be relatively young because they have few, if any craters. Moreover, they lie on top of sand dunes which themselves are considered to be quite young. Usually, each gully has an alcove, channel, and apron. Some studies have found that gullies occur on slopes that face all directions,[3] others have found that the greater number of gullies are found on poleward facing slopes, especially from 30-44 S.[4][5]

Although many ideas have been put forward to explain them,[6] the most popular involve liquid water coming from an aquifer, from melting at the base of old glaciers, or from the melting of ice in the ground when the climate was warmer.[7][8] Because of the good possibility that liquid water was involved with their formation and that they could be very young, scientists are excited. Maybe the gullies are where we should go to find life.

There is evidence for all three theories. Most of the gully alcove heads occur at the same level, just as one would expect of an aquifer. Various measurements and calculations show that liquid water could exist in aquifers at the usual depths where gullies begin.[7] One variation of this model is that rising hot magma could have melted ice in the ground and caused water to flow in aquifers. Aquifers are layer that allow water to flow. They may consist of porous sandstone. The aquifer layer would be perched on top of another layer that prevents water from going down (in geological terms it would be called impermeable). Because water in an aquifer is prevented from going down, the only direction the trapped water can flow is horizontally. Eventually, water could flow out onto the surface when the aquifer reaches a break—like a crater wall. The resulting flow of water could erode the wall to create gullies.[9] Aquifers are quite common on Earth. A good example is "Weeping Rock" in Zion National Park Utah.[10]

As for the next theory, much of the surface of Mars is covered by a thick smooth mantle that is thought to be a mixture of ice and dust.[11][12][13] This ice-rich mantle, a few yards thick, smoothes the land, but in places it has a bumpy texture, resembling the surface of a basketball. The mantle may be like a glacier and under certain conditions the ice that is mixed in the mantle could melt and flow down the slopes and make gullies.[14][15][16] Because there are few craters on this mantle, the mantle is relatively young. An excellent view of this mantle is shown below in the picture of the Ptolemaeus Crater Rim, as seen by HiRISE.[17] The ice-rich mantle may be the result of climate changes.[18] Changes in Mars's orbit and tilt cause significant changes in the distribution of water ice from polar regions down to latitudes equivalent to Texas. During certain climate periods water vapor leaves polar ice and enters the atmosphere. The water comes back to ground at lower latitudes as deposits of frost or snow mixed generously with dust. The atmosphere of Mars contains a great deal of fine dust particles. Water vapor will condense on the particles, then fall down to the ground due to the additional weight of the water coating. When Mars is at its greatest tilt or obliquity, up to 2 cm of ice could be removed from the summer ice cap and deposited at midlatitudes. This movement of water could last for several thousand years and create a snow layer of up to around 10 meters thick.[19][20] When ice at the top of the mantling layer goes back into the atmosphere, it leaves behind dust, which insulating the remaining ice.[21] Measurements of altitudes and slopes of gullies support the idea that snowpacks or glaciers are associated with gullies. Steeper slopes have more shade which would preserve snow.[4][5] Higher elevations have far fewer gullies because ice would tend to sublimate more in the thin air of the higher altitude.[22]

The third theory might be possible since climate changes may be enough to simply allow ice in the ground to melt and thus form the gullies. During a warmer climate, the first few meters of ground could thaw and produce a "debris flow" similar to those on the dry and cold Greenland east coast.[23] Since the gullies occur on steep slopes only a small decrease of the shear strength of the soil particles is needed to begin the flow. Small amounts of liquid water from melted ground ice could be enough.[24][25] Calculations show that a third of a mm of runoff can be produced each day for 50 days of each Martian year, even under current conditions.[26]

Argyre basin

The Argyre basin was created by a giant impact that occurred 70 million years after the Hellas impact.[27] It is believed to have contained a lake early in the history of Mars.[28] At least three river valleys (Surius Vallis, Dzigal Vallis, and Palacopus Vallis) drain into it from the south. After it froze solid, the ice formed eskers which are visible today.[29][30] An article written by 22 researchers in Icarus concluded that the impact that formed the Argyre basin probably stuck an ice cap or a thick permafrost layer. Energy from the impact melted the ice and formed a giant lake that eventually sent water to the North. The lakes's volume was equal to that of Earth's Mediterranean Sea. The deepest part of the lake may have taken more than a hundred thousand years to freeze, but with the help of heat from the impact, geothermal heating, and dissolved solutes it may have had liquid water for many millions of years. Life may have developed in this time. This region shows a great deal of evidence of glacial activity with flow features, crevasse-like fractues, drumlines, eskers, tarns, aretes, cirques, horns, U-shaped valleys, and terraces. Because of the shapes of Argyre sinuous ridges, the authors concluded that they are eskers.[31] Studies with advanced cameras, such as CTX, and MRO High Resolution Imaging Science Experiment (HiRISE) suggests that these ridges are probably eskers.[32][33]

Galle (Martian crater)

Other craters

Impact craters generally have a rim with ejecta around them, in contrast volcanic craters usually do not have a rim or ejecta deposits. As craters get larger (greater than 10 km in diameter) they usually have a central peak.[34] The peak is caused by a rebound of the crater floor following the impact.[35] Often, craters with diameters greater than 100 km have rings on their floors. Since so much material is blasted away, the ground readjusts, making circular faults. When lava flows upward along the faults, rings are produced.[36] Sometimes craters will display layers. Since the collision that produces a crater is like a powerful explosion, rocks from deep underground are tossed unto the surface. Hence, craters can show us what lies deep under the surface.

Gallery

Other Mars quadrangles

Interactive Mars map

Acidalia Planitia Acidalia Planitia Alba Mons Amazonis Planitia Aonia Terra Arabia Terra Arcadia Planitia Arcadia Planitia Argyre Planitia Elysium Mons Elysium Planitia Hellas Planitia Hesperia Planum Isidis Planitia Lucas Planum Lyot (crater) Noachis Terra Olympus Mons Promethei Terra Rudaux (crater) Solis Planum Tempe Terra Terra Cimmeria Terra Sabaea Terra Sirenum Tharsis Montes Utopia Planitia Valles Marineris Vastitas Borealis Vastitas BorealisMap of Mars
Interactive imagemap of the global topography of Mars. Hover your mouse to see the names of over 25 prominent geographic features, and click to link to them. Coloring of the base map indicates relative elevations, based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Reds and pinks are higher elevation (+3 km to +8 km); yellow is 0 km; greens and blues are lower elevation (down to −8 km). Whites (>+12 km) and browns (>+8 km) are the highest elevations. Axes are latitude and longitude; Poles are not shown.
(view • discuss)

See also

References

  1. Davies, M.E.; Batson, R.M.; Wu, S.S.C. "Geodesy and Cartography" in Kieffer, H.H.; Jakosky, B.M.; Snyder, C.W.; Matthews, M.S., Eds. Mars. University of Arizona Press: Tucson, 1992.
  2. Tornabene, L.; et al. (2012). "Widespread crater-related pitted materials on Mars. Further evidence for the role of target volatiles during the impact process". Icarus. 220: 348–368. Bibcode:2012Icar..220..348T. doi:10.1016/j.icarus.2012.05.022.
  3. Edgett, K. et al. 2003. Polar-and middle-latitude martian gullies: A view from MGS MOC after 2 Mars years in the mapping orbit. Lunar Planet. Sci. 34. Abstract 1038.
  4. 1 2 http://www.planetary.brown.edu/pdfs/3138.pdf
  5. 1 2 Dickson, J.; et al. (2007). "Martian gullies in the southern mid-latitudes of Mars Evidence for climate-controlled formation of young fluvial features based upon local and global topography". Icarus. 188: 315–323. Bibcode:2007Icar..188..315D. doi:10.1016/j.icarus.2006.11.020.
  6. "PSRD: Gullied Slopes on Mars". Retrieved 26 December 2014.
  7. 1 2 Heldmann, J.; Mellon, M. (2004). "Observations of martian gullies and constraints on potential formation mechanisms". Icarus. 168: 285–304. Bibcode:2004Icar..168..285H. doi:10.1016/j.icarus.2003.11.024.
  8. Forget, F. et al. 2006. Planet Mars Story of Another World. Praxis Publishing. Chichester, UK.
  9. "Mars Gullies Likely Formed By Underground Aquifers". Space.com. Retrieved 26 December 2014.
  10. Harris, A and E. Tuttle. 1990. Geology of National Parks. Kendall/Hunt Publishing Company. Dubuque, Iowa
  11. Malin, M.; Edgett, K. (2001). "Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission". J. Geophys. Res. 106: 23429–23570. Bibcode:2001JGR...10623429M. doi:10.1029/2000je001455.
  12. Mustard, J.; et al. (2001). "Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice". Nature. 412: 411–414. doi:10.1038/35086515.
  13. Carr, M (2001). "Mars Global Surveyor observations of fretted terrain". J. Geophys. Res. 106: 23571–23595. Bibcode:2001JGR...10623571C. doi:10.1029/2000je001316.
  14. "Martian gullies could be scientific gold mines". msnbc.com. Retrieved 26 December 2014.
  15. "Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin". Retrieved 26 December 2014.
  16. Head, J.; et al. (2008). "Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin". PNAS. 105: 13258–13263. doi:10.1073/pnas.0803760105.
  17. Christensen, P (2003). "Formation of recent martian gullies through melting of extensive water-rich snow deposits". Nature. 422: 45–48. doi:10.1038/nature01436.
  18. "Melting Snow Created Mars Gullies, Expert Says". Retrieved 26 December 2014.
  19. Jakosky, B.; Carr, M. (1985). "Possible precipitation of ice at low latitudes of Mars during periods of high obliquity". Nature. 315: 559–561. doi:10.1038/315559a0.
  20. Jakosky, B.; et al. (1995). "Chaotic obliquity and the nature of the Martian climate". J. Geophys. Res. 100: 1579–1584. Bibcode:1995JGR...100.1579J. doi:10.1029/94je02801.
  21. MLA NASA/Jet Propulsion Laboratory (2003, December 18). Mars May Be Emerging From An Ice Age. ScienceDaily. Retrieved February 19, 2009, from http://www.sciencedaily.com /releases/2003/12/031218075443.htmAds by GoogleAdvertise
  22. Hecht, M (2002). "Metastability of liquid water on Mars". Icarus. 156: 373–386. Bibcode:2002Icar..156..373H. doi:10.1006/icar.2001.6794.
  23. Peulvast, J. Physio-Geo. 18. 87-105.
  24. Costard, F. et al. 2001. Debris Flows on Mars: Analogy with Terrestrial Periglacial Environment and Climatic Implications. Lunar and Planetary Science XXXII (2001). 1534.pdf
  25. http://www.spaceref.com:16090/news/viewpr.html?pid=7124,
  26. Clow, G (1987). "Generation of liquid water on Mars through the melting of a dusty snowpack". Icarus. 72: 93–127.
  27. Robbins; et al. (2013). "large impact crater histories of Mars: The effect of different model crater age techniques". Icarus. 225: 173–184. Bibcode:2013Icar..225..173R. doi:10.1016/j.icarus.2013.03.019.
  28. Parker, T. et al. 2000. Argyre Planitia and the Mars global hydrolocia cycle. LPSC XXXI. Abstract 2033
  29. Kargel,J. and R. Strom. 1991. Terrestrial glacial eskers: analogs for martian sinuous ridges. LPSC XXII, 683-684.
  30. Michael H. Carr (2006). The surface of Mars. Cambridge University Press. ISBN 978-0-521-87201-0. Retrieved 21 March 2011.
  31. Dohm, J.; Hare, T.; Robbins, S.; Williams, J.-P.; Soare, R.; El-Maarry, M.; Conway, S.; Buczkowski, D.; Kargel, J.; Banks, M.; Fairén, A.; Schulze-Makuch, D.; Komatsu, G.; Miyamoto, H.; Anderson, R.; Davila, A.; Mahaney, W.; Fink, W.; Cleaves, H.; Yan, J.; Hynek, B.; Maruyama, S. (2015). "Geological and hydrological histories of the Argyre province, Mars". Icarus. 253: 66–98. Bibcode:2015Icar..253...66D. doi:10.1016/j.icarus.2015.02.017.
  32. Banks, M.; Lang, N.; Kargel, J.; McEwen, A.; Baker, V.; Grant, J.; Pelletier, J.; Strom, R. (2009). "An analysis of sinuous ridges in the southern Argyre Planitia, Mars using HiRISE and CTX images and MOLA data". J. Geophys. Res. 114. Bibcode:2009JGRE..114.9003B. doi:10.1029/2008JE003244.
  33. Bernhardt, H.; Hiesinger, H.; Reiss, D.; Ivanov, M.; Erkeling, G. (2013). "Putative eskers and new insights into glacio-fluvial depositional settings southern Argyre Planitia, Mars". Planet. Space Sci. 85: 261–278. Bibcode:2013P&SS...85..261B. doi:10.1016/j.pss.2013.06.022.
  34. "Stones, Wind, and Ice: A Guide to Martian Impact Craters". Retrieved 26 December 2014.
  35. Hugh H. Kieffer (1992). Mars. University of Arizona Press. ISBN 978-0-8165-1257-7. Retrieved 7 March 2011.
  36. Forget, F. et al. 2006. Planet Mars Story of Another World. Praxis Publishing. Chichester, UK
  37. 1 2 Morton, Oliver (2002). Mapping Mars: Science, Imagination, and the Birth of a World. New York: Picador USA. p. 98. ISBN 0-312-24551-3.
  38. "Online Atlas of Mars". Ralphaeschliman.com. Retrieved December 16, 2012.
  39. "PIA03467: The MGS MOC Wide Angle Map of Mars". Photojournal. NASA / Jet Propulsion Laboratory. February 16, 2002. Retrieved December 16, 2012.
  40. "Online Atlas of Mars". Ralphaeschliman.com. Retrieved December 16, 2012.
  41. "PIA03467: The MGS MOC Wide Angle Map of Mars". Photojournal. NASA / Jet Propulsion Laboratory. February 16, 2002. Retrieved December 16, 2012.

External links

Wikimedia Commons has media related to Argyre quadrangle.
This article is issued from Wikipedia - version of the 11/26/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.