Rectified 5-cell

Rectified 5-cell

Schlegel diagram with the 5 tetrahedral cells shown.
Type Uniform 4-polytope
Schläfli symbol t1{3,3,3} or r{3,3,3}
{32,1} =
Coxeter-Dynkin diagram
Cells 10 5 {3,3}
5 3.3.3.3
Faces 30 {3}
Edges 30
Vertices 10
Vertex figure
Triangular prism
Symmetry group A4, [3,3,3], order 120
Petrie Polygon Pentagon
Properties convex, isogonal, isotoxal
Uniform index 1 2 3

In four-dimensional geometry, the rectified 5-cell is a uniform 4-polytope composed of 5 regular tetrahedral and 5 regular octahedral cells. Each edge has one tetrahedron and two octahedra. Each vertex has two tetrahedra and three octahedra. In total it has 30 triangle faces, 30 edges, and 10 vertices. Each vertex is surrounded by 3 octahedra and 2 tetrahedra; the vertex figure is a triangular prism.

The vertex figure of the rectified 5-cell is a uniform triangular prism, formed by three octahedra around the sides, and two tetrahedra on the opposite ends.[1]

Structure

Together with the simplex and 24-cell, this shape and its dual (a polytope with ten vertices and ten triangular bipyramid facets) was one of the first 2-simple 2-simplicial 4-polytopes known. This means that all of its two-dimensional faces, and all of the two-dimensional faces of its dual, are triangles. In 1997, Tom Braden found another dual pair of examples, by gluing two rectified 5-cells together; since then, infinitely many 2-simple 2-simplicial polytopes have been constructed.[2][3]

The birectified 5-cell can be seen as the intersection of two regular 5-cells in dual positions. = .

Semiregular polytope

It is one of three semiregular 4-polytope made of two or more cells which are Platonic solids, discovered by Thorold Gosset in his 1900 paper. He called it a tetroctahedric for being made of tetrahedron and octahedron cells.[4]

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC5.

Alternate names

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

stereographic projection
(centered on octahedron)

Net (polytope)
Tetrahedron-centered perspective projection into 3D space, with nearest tetrahedron to the 4D viewpoint rendered in red, and the 4 surrounding octahedra in green. Cells lying on the far side of the polytope have been culled for clarity (although they can be discerned from the edge outlines). The rotation is only of the 3D projection image, in order to show its structure, not a rotation in 4D space.

Coordinates

The Cartesian coordinates of the vertices of an origin-centered rectified 5-cell having edge length 2 are:

More simply, the vertices of the rectified 5-cell can be positioned on a hyperplane in 5-space as permutations of (0,0,0,1,1) or (0,0,1,1,1). These construction can be seen as positive orthant facets of the rectified pentacross or birectified penteract respectively.

Related 4-polytopes

This polytope is the vertex figure of the 5-demicube, and the edge figure of the uniform 221 polytope.

It is also one of 9 Uniform 4-polytopes constructed from the [3,3,3] Coxeter group.

Name 5-cell truncated 5-cell rectified 5-cell cantellated 5-cell bitruncated 5-cell cantitruncated 5-cell runcinated 5-cell runcitruncated 5-cell omnitruncated 5-cell
Schläfli
symbol
{3,3,3}
3r{3,3,3}
t{3,3,3}
2t{3,3,3}
r{3,3,3}
2r{3,3,3}
rr{3,3,3}
r2r{3,3,3}
2t{3,3,3} tr{3,3,3}
t2r{3,3,3}
t0,3{3,3,3} t0,1,3{3,3,3}
t0,2,3{3,3,3}
t0,1,2,3{3,3,3}
Coxeter
diagram






Schlegel
diagram
A4
Coxeter plane
Graph
A3 Coxeter plane
Graph
A2 Coxeter plane
Graph

Related polytopes and honeycombs

The rectified 5-cell is second in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed as the vertex figure of the previous polytope. Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes (tetrahedrons and octahedrons in the case of the rectified 5-cell). The Coxeter symbol for the rectified 5-cell is 021.

Isotopics polytopes

Isotopic uniform truncated simplices
Dim. 2 3 4 5 6 7 8
Name
Coxeter
Hexagon
=
t{3} = {6}
Octahedron
=
r{3,3} = {31,1} = {3,4}
Decachoron

2t{33}
Dodecateron

2r{34} = {32,2}
Tetradecapeton

3t{35}
Hexadecaexon

3r{36} = {33,3}
Octadecazetton

4t{37}
Images
Facets {3} t{3,3} r{3,3,3} 2t{3,3,3,3} 2r{3,3,3,3,3} 3t{3,3,3,3,3,3}
As
intersecting
dual
simplexes




See also

Notes

  1. Conway, 2008
  2. Eppstein, David; Kuperberg, Greg; Ziegler, Günter M. (2003), "Fat 4-polytopes and fatter 3-spheres", in Bezdek, Andras, Discrete Geometry: In honor of W. Kuperberg's 60th birthday, Pure and Applied Mathematics, 253, Marcel Dekker, pp. 239–265, arXiv:math.CO/0204007Freely accessible.
  3. Paffenholz, Andreas; Ziegler, Günter M. (2004), "The Et-construction for lattices, spheres and polytopes", Discrete & Computational Geometry, 32 (4): 601–621, arXiv:math.MG/0304492Freely accessible, doi:10.1007/s00454-004-1140-4, MR 2096750.
  4. Gosset, 1900

References

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia - version of the 10/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.