Manin obstruction

In mathematics, in the field of arithmetic algebraic geometry, the Manin obstruction (named after Yuri Manin) is attached to a variety X over a global field, which measures the failure of the Hasse principle for X. If the value of the obstruction is non-trivial, then X may have points over all local fields but not over the global field.

For abelian varieties the Manin obstruction is just the Tate-Shafarevich group and fully accounts for the failure of the local-to-global principle (under the assumption that the Tate-Shafarevich group is finite). There are however examples, due to Skorobogatov, of varieties with trivial Manin obstruction which have points everywhere locally and yet no global points.

References

This article is issued from Wikipedia - version of the 5/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.