Building material

For other kinds of building materials, see Household hardware, Biology, and Star formation.
Concrete and metal rebar used to build a floor

Building material is any material which is used for construction purposes. Many naturally occurring substances, such as clay, rocks, sand, and wood, even twigs and leaves, have been used to construct buildings. Apart from naturally occurring materials, many man-made products are in use, some more and some less synthetic. The manufacture of building materials is an established industry in many countries and the use of these materials is typically segmented into specific specialty trades, such as carpentry, insulation, plumbing, and roofing work. They provide the make-up of habitats and structures including homes.[1]

The total cost of building materials

In history there are trends in building materials from being: natural to becoming more man-made and composite; biodegradable to imperishable; indigenous (local) to being transported globally; repairable to disposable; and chosen for increased levels of fire-safety. These trends tend to increase the initial and long term economic, ecological, energy, and social costs of building materials.

Economic costs

The initial economic cost of building materials is the purchase price. This is often what governs decision making about what materials to use. Sometimes people take into consideration the energy savings or durability of the materials and see the value of paying a higher initial cost in return for a lower lifetime cost. For example, an asphalt shingle roof costs less than a metal roof to install, but the metal roof will last longer so the lifetime cost is less per year. Some materials may require more care than others, maintaining costs specific to some materials may also influence the final decision. Risks when considering lifetime cost of a material is if the building is damaged such as by fire or wind, or if the material is not as durable as advertised. The cost of materials should be taken into consideration to bear the risk to buy combustive materials to enlarge the lifetime. It is said that, 'if it must be done, it must be done well'.

Ecological costs

Main article: Ecological footprint

Pollution costs can be macro and micro. The macro, environmental pollution of extraction industries building materials rely on such as mining, petroleum, and logging produce environmental damage at their source and in transportation of the raw materials, manufacturing, transportation of the products, retailing, and installation. An example of the micro aspect of pollution is the off-gassing of the building materials in the building or indoor air pollution. Red List building materials are materials found to be harmful. Also the carbon footprint, the total set of greenhouse gas emissions produced in the life of the material. A life-cycle analysis also includes the reuse, recycling, or disposal of construction waste. Two concepts in building which account for the ecological economics of building materials are green building and sustainable development.

Energy costs

Initial energy costs include the amount of energy consumed to produce, deliver and install the material. The long term energy cost is the economic, ecological, and social costs of continuing to produce and deliver energy to the building for its use, maintenance, and eventual removal. The initial embodied energy of a structure is the energy consumed to extract, manufacture, deliver, install, the materials. The life time embodied energy continues to grow with the use, maintenance, and reuse/recycling/disposal of the building materials themselves and how the materials and design help minimize the life-time energy consumption of the structure.

Social costs

Social costs are injury and health of the people producing and transporting the materials and potential health problems of the building occupants if there are problems with the building biology. Globalization has had significant impacts on people both in terms of jobs, skills, and self-sufficiency are lost when manufacturing facilities are closed and the cultural aspects of where new facilities are opened. Aspects of fair trade and labor rights are social costs of global building material manufacturing.

Naturally occurring substances

Brush

View of a group of Mohaves in a brush hut

Brush structures are built entirely from plant parts and were used in primitive cultures such as Native Americans,[2] pygmy peoples in Africa[3] These are built mostly with branches, twigs and leaves, and bark, similar to a beaver's lodge. These were variously named wikiups, lean-tos, and so forth.

An extension on the brush building idea is the wattle and daub process in which clay soils or dung, usually cow, are used to fill in and cover a woven brush structure. This gives the structure more thermal mass and strength. Wattle and daub is one of the oldest building techniques.[4] Many older timber frame buildings incorporate wattle and daub as non load bearing walls between the timber frames.

Ice and snow

Snow and occasionally ice,[5] were used by the Inuit peoples for igloos and snow is used to build a shelter called a quinzhee. Ice has also been used for ice hotels as a tourist attraction in northern climates.[6]

Mud and clay

Sod buildings in Iceland

Clay based buildings usually come in two distinct types. One being when the walls are made directly with the mud mixture, and the other being walls built by stacking air-dried building blocks called mud bricks.

Other uses of clay in building is combined with straws to create light clay, wattle and daub, and mud plaster.

Wet-laid clay walls

Main articles: rammed earth, sod, and cob (building)

Wet-laid, or damp, walls are made by using the mud or clay mixture directly without forming blocks and drying them first. The amount of and type of each material in the mixture used leads to different styles of buildings. The deciding factor is usually connected with the quality of the soil being used. Larger amounts of clay are usually employed in building with cob, while low-clay soil is usually associated with sod house or sod roof construction. The other main ingredients include more or less sand/gravel and straw/grasses. Rammed earth is both an old and newer take on creating walls, once made by compacting clay soils between planks by hand; nowadays forms and mechanical pneumatic compressors are used.[7]

Soil, and especially clay, provides good thermal mass; it is very good at keeping temperatures at a constant level. Homes built with earth tend to be naturally cool in the summer heat and warm in cold weather. Clay holds heat or cold, releasing it over a period of time like stone. Earthen walls change temperature slowly, so artificially raising or lowering the temperature can use more resources than in say a wood built house, but the heat/coolness stays longer.[7]

People building with mostly dirt and clay, such as cob, sod, and adobe, created homes that have been built for centuries in western and northern Europe, Asia, as well as the rest of the world, and continue to be built, though on a smaller scale. Some of these buildings have remained habitable for hundreds of years.[8][9]

Structural clay blocks and bricks

Mud-bricks, also known by their Spanish name adobe are ancient building materials with evidence dating back thousands of years BC. Compressed earth blocks are a more modern type of brick used for building more frequently in industrialized society since the building blocks can be manufactured off site in a centralized location at a brickworks and transported to multiple building locations. These blocks can also be monetized more easily and sold.

Structural mud bricks are almost always made using clay, often clay soil and a binder are the only ingredients used, but other ingredients can include sand, lime, concrete, stone and other binders. The formed or compressed block is then air dried and can be laid dry or with a mortar or clay slip.

Sand

Sand is used with cement, and sometimes lime, to make mortar for masonry work and plaster. Sand is also used as a part of the concrete mix. An important low-cost building material in countries with high sand content soils is the Sandcrete block, which is weaker but cheaper than fired clay bricks.[10]

Stone or rock

Rock structures have existed for as long as history can recall. It is the longest lasting building material available, and is usually readily available. There are many types of rock throughout the world, all with differing attributes that make them better or worse for particular uses. Rock is a very dense material so it gives a lot of protection too; its main drawback as a material is its weight and awkwardness. Its energy density is also considered a big drawback, as stone is hard to keep warm without using large amounts of heating resources.

Dry-stone walls have been built for as long as humans have put one stone on top of another. Eventually, different forms of mortar were used to hold the stones together, cement being the most commonplace now.

The granite-strewn uplands of Dartmoor National Park, United Kingdom, for example, provided ample resources for early settlers. Circular huts were constructed from loose granite rocks throughout the Neolithic and early Bronze Age, and the remains of an estimated 5,000 can still be seen today. Granite continued to be used throughout the Medieval period (see Dartmoor longhouse) and into modern times. Slate is another stone type, commonly used as roofing material in the United Kingdom and other parts of the world where it is found.

Stone buildings can be seen in most major cities; some civilizations built entirely with stone such as the Egyptian and Aztec pyramids and the structures of the Inca civilization.

Thatch

Toda tribe hut

Thatch is one of the oldest of building materials known; grass is a good insulator and easily harvested. Many African tribes have lived in homes made completely of grasses and sand year-round. In Europe, thatch roofs on homes were once prevalent but the material fell out of favor as industrialization and improved transport increased the availability of other materials. Today, though, the practice is undergoing a revival. In the Netherlands, for instance, many new buildings have thatched roofs with special ridge tiles on top.

Wood and timber

A wood-framed house under construction in Texas, United States
The Gliwice Radio Tower (the second tallest wooden structure in the world) in Poland (2012).

Wood has been used as a building material for thousands of years in its natural state. Today, engineered wood is becoming very common in industrialized countries.

Wood is a product of trees, and sometimes other fibrous plants, used for construction purposes when cut or pressed into lumber and timber, such as boards, planks and similar materials. It is a generic building material and is used in building just about any type of structure in most climates. Wood can be very flexible under loads, keeping strength while bending, and is incredibly strong when compressed vertically. There are many differing qualities to the different types of wood, even among same tree species. This means specific species are better suited for various uses than others. And growing conditions are important for deciding quality.

"Timber" is the term used for construction purposes except the term "lumber" is used in the United States. Raw wood (a log, trunk, bole) becomes timber when the wood has been "converted" (sawn, hewn, split) in the forms of minimally-processed logs stacked on top of each other, timber frame construction, and light-frame construction. The main problems with timber structures are fire risk and moisture-related problems.

In modern times softwood is used as a lower-value bulk material, whereas hardwood is usually used for finishings and furniture. Historically timber frame structures were built with oak in western Europe, recently douglas fir has become the most popular wood for most types of structural building.

Many families or communities, in rural areas, have a personal woodlot from which the family or community will grow and harvest trees to build with or sell. These lots are tended to like a garden. This was much more prevalent in pre-industrial times, when laws existed as to the amount of wood one could cut at any one time to ensure there would be a supply of timber for the future, but is still a viable form of agriculture.

Man-made substances

Fired bricks and clay blocks

A pile of fired bricks.
Clay blocks (sometimes called clay block brick) being laid with an adhesive rather than mortar

Bricks are made in a similar way to mud-bricks except without the fibrous binder such as straw and are fired ("burned" in a brick clamp or kiln) after they have air-dried to permanently harden them. Kiln fired clay bricks are a ceramic material. Fired bricks can be solid or have hollow cavities to aid in drying and make them lighter and easier to transport. The individual bricks are placed upon each other in courses using mortar. Successive courses being used to build up walls, arches, and other architectural elements. Fired brick walls are usually substantially thinner than cob/adobe while keeping the same vertical strength. They require more energy to create but are easier to transport and store, and are lighter than stone blocks. Romans extensively used fired brick of a shape and type now called Roman bricks.[11] Building with brick gained much popularity in the mid-18th century and 19th centuries. This was due to lower costs with increases in brick manufacturing and fire-safety in the ever crowding cities.

The cinder block supplemented or replaced fired bricks in the late 20th century often being used for the inner parts of masonry walls and by themselves.

Structural clay tiles (clay blocks) are clay or terracotta and typically are perforated with holes.

Cement composites

Cement bonded composites are made of hydrated cement paste that binds wood, particles, or fibers to make pre-cast building components. Various fiberous materials, including paper, fiberglass, and carbon-fiber have been used as binders.

Wood and natural fibers are composed of various soluble organic compounds like carbohydrates, glycosides and phenolics. These compounds are known to retard cement setting. Therefore, before using a wood in making cement bonded composites, its compatibility with cement is assessed.

Wood-cement compatibility is the ratio of a parameter related to the property of a wood-cement composite to that of a neat cement paste. The compatibility is often expressed as a percentage value. To determine wood-cement compatibility, methods based on different properties are used, such as, hydration characteristics, strength, interfacial bond and morphology. Various methods are used by researchers such as the measurement of hydration characteristics of a cement-aggregate mix;[12][13][14] the comparison of the mechanical properties of cement-aggregate mixes[15][16] and the visual assessment of microstructural properties of the wood-cement mixes.[17] It has been found that the hydration test by measuring the change in hydration temperature with time is the most convenient method. Recently, Karade et al.[18] have reviewed these methods of compatibility assessment and suggested a method based on the ‘maturity concept’ i.e. taking in consideration both time and temperature of cement hydration reaction.

Bricks were laid in lime mortar from the time of the Romans until supplanted by Portland cement mortar in the early 20th century. Cement blocks also sometimes are filled with grout or covered with a parge coat.

Concrete

Concrete is a composite building material made from the combination of aggregate and a binder such as cement. The most common form of concrete is Portland cement concrete, which consists of mineral aggregate (generally gravel and sand), portland cement and water.

After mixing, the cement hydrates and eventually hardens into a stone-like material. When used in the generic sense, this is the material referred to by the term "concrete".

For a concrete construction of any size, as concrete has a rather low tensile strength, it is generally strengthened using steel rods or bars (known as rebars). This strengthened concrete is then referred to as reinforced concrete. In order to minimise any air bubbles, that would weaken the structure, a vibrator is used to eliminate any air that has been entrained when the liquid concrete mix is poured around the ironwork. Concrete has been the predominant building material in the modern age due to its longevity, formability, and ease of transport. Recent advancements, such as insulating concrete forms, combine the concrete forming and other construction steps (installation of insulation). All materials must be taken in required proportions as described in standards.

Fabric

The tent is the home of choice among nomadic groups all over the world. Two well-known types include the conical teepee and the circular yurt. The tent has been revived as a major construction technique with the development of tensile architecture and synthetic fabrics. Modern buildings can be made of flexible material such as fabric membranes, and supported by a system of steel cables, rigid or internal, or by air pressure.

Foam

Foamed plastic sheet to be used as backing for firestop mortar at CIBC bank in Toronto.

Recently, synthetic polystyrene or polyurethane foam has been used in combination with structural materials, such as concrete. It is lightweight, easily shaped, and an excellent insulator. Foam is usually used as part of a structural insulated panel, wherein the foam is sandwiched between wood or cement or insulating concrete forms.

Glass

Glassmaking is considered an art form as well as an industrial process or material.

Clear windows have been used since the invention of glass to cover small openings in a building. Glass panes provided humans with the ability to both let light into rooms while at the same time keeping inclement weather outside.

Glass is generally made from mixtures of sand and silicates, in a very hot fire stove called a kiln, and is very brittle. Additives are often included the mixture used to produce glass with shades of colors or various characteristics (such as bulletproof glass or light emittance).

The use of glass in architectural buildings has become very popular in the modern culture. Glass "curtain walls" can be used to cover the entire facade of a building, or it can be used to span over a wide roof structure in a "space frame". These uses though require some sort of frame to hold sections of glass together, as glass by itself is too brittle and would require an overly large kiln to be used to span such large areas by itself.

Glass bricks were invented in the early 20th century.

Gypcrete

Gypcrete is a mixture of gypsum plaster and fibreglass rovings. Although plaster and fibres fiborous plaster have been used for many years, especially for ceilings, it was not until the early 1990s that serious studies of the strength and qualities of a walling system Rapidwall, using a mixture of gypsum plaster and 300mm plus fibreglass rovings, were investigated. It was discovered, through testing at the University of Adelaide, that these walls had significant, load bearing, shear and lateral resistance together with earthquake-resistance, fire-resistance, and thermal properties. With an abundance of gypsum (naturally occurring and by-product chemical FGD and phospho gypsums) available worldwide, gypcrete-based building products, which are fully recyclable, offer significant environmental benefits.

Metal

Metal is used as structural framework for larger buildings such as skyscrapers, or as an external surface covering. There are many types of metals used for building. Metal figures quite prominently in prefabricated structures such as the Quonset hut, and can be seen used in most cosmopolitan cities. It requires a great deal of human labor to produce metal, especially in the large amounts needed for the building industries. Corrosion is metal's prime enemy when it comes to longevity.

Copper belfry of St. Laurentius church, Bad Neuenahr-Ahrweiler

Plastics

Plastic pipes penetrating a concrete floor in a Canadian highrise apartment building

The term "plastics" covers a range of synthetic or semi-synthetic organic condensation or polymerization products that can be molded or extruded into objects, films, or fibers. Their name is derived from the fact that in their semi-liquid state they are malleable, or have the property of plasticity. Plastics vary immensely in heat tolerance, hardness, and resiliency. Combined with this adaptability, the general uniformity of composition and lightness of plastics ensures their use in almost all industrial applications today. High performance plastics such as ETFE have become an ideal building material due to its high abrasion resistance and chemical inertness. Notable buildings that feature it include: the Beijing National Aquatics Center and the Eden Project biomes.[19]

Papers and membranes

Building papers and membranes are used for many reasons in construction. One of the oldest building papers is red rosin paper which was known to be in use before 1850 and was used as an underlayment in exterior walls, roofs, and floors and for protecting a jobsite during construction. Tar paper was invented late in the 19th century and was used for similar purposes as rosin paper and for gravel roofs. Tar paper has largely fallen out of use supplanted by asphalt felt paper. Felt paper has been supplanted in some uses by synthetic underlayments, particularly in roofing by synthetic underlayments and siding by housewraps.

There are a wide variety of damp proofing and waterproofing membranes used for roofing, basement waterproofing, and geomembranes.

Ceramics

Fired clay bricks have been used since the time of the Romans. Special tiles are used for roofing, siding, flooring, ceilings, pipes, flue liners, and more.

Building products

In the market place the term "building products" often refers to ready-made particles/sections, made from various materials, that are fitted in architectural hardware and decorative hardware parts of a building. The list of building products excludes the building materials used to construct the building architecture and supporting fixtures, like windows, doors, cabinets, etc. Building products, rather, support and make building materials work in a modular fashion.

"Building products" may also refer to items used to put such hardware together, such as caulking, glues, paint, and anything else bought for the purpose of constructing a building.

Testing and certification

See also

References

  1. "building" def. 2 and 4, "material" def. 1. Oxford English Dictionary Second Edition on CD-ROM (v. 4.0)© Oxford University Press 2009
  2. Nabokov, Peter, and Robert Easton. Native American architecture. New York: Oxford University Press, 1989. 16. Print.
  3. Kent, Susan. Domestic architecture and the use of space: an interdisciplinary cross-cultural study. Cambridge, England: Cambridge University Press, 1990. 131.Print.
  4. Shaffer, G.D. "An Archaeomagnetic Study of a Wattle and Daub Building Collapse." Journal of Field Archaeology, 20, No. 1. Spring, 1993. 59-75. JSTOR. Accessed 28 January 2007
  5. Lyon, G. F.. The private journal of Captain G.F. Lyon, of H.M.S. Hecla, during the recent voyage of discovery under Captain Parry .... London: J. Murray, 1824. 280-281. Print.
  6. Hall, Colin Michael, and Jarkko Saarinen. Tourism and change in polar regions: climate, environments and experiences. Milton Park, Abingdon, Oxon, England: Routledge, 2010. 30. Print.
  7. 1 2 McHenry, Paul Graham. Adobe and rammed earth buildings: design and construction. New York: Wiley, 1984. 104. Print.
  8. Smith, Michael G. "Cob Building, Ancient and Modern," in Kennedy, Smith and Wanek, (2002), 132-133.
  9. Earliest Chinese building brick appeared in Xi'an (中國最早磚類建材在西安現身)]. takungpao.com (2010-1-28)
  10. Zoya Kpamma, Z. Mohammed Kamil, K. Adinkrah-Appiah, "Making Wall Construction Process Lean:The Interlocking Blocksystem as a Toole" [sic], International Conference on Infrastructural Development In Africa (ICIDA), KNUST, Kumasi,Ghana, March 2012. http://www.academia.edu/2647016/MAKING_WALL_CONSTRUCTION_PROCESS_LEAN_THE_INTERLOCKING_BLOCK_SYSTEM_AS_A_TOOL accessed 12/11/2013
  11. History of bricks wienerberger.com
  12. Sandermann, W. and Kohler, R. (1964) Studies on mineral-bonded wood materials. IV. A short test of the aptitudes of woods for cement-bonded materials. Holzforschung 18, 53:59.
  13. Weatherwax, R.C. and Tarkow, H. (1964) Effect of wood on setting of Portland cement. For. Prod. J. 14(12), 567-570.
  14. Hachmi, M., Moslemi, A.A. and Campbell, A.G. (1990) A new technique to classify the compatibility of wood with cement. Wood Sci. Technol. 24(4), 345-354.
  15. Hong, Z. and Lee, A.W.C. (1986) Compressive strength of cylindrical samples as an indicator of wood- cement compatibility. For. Prod. J. 36(11/12), 87-90.
  16. Demirbas, A. and Aslan, A. (1998) Effects of ground hazelnut shell, wood and tea waste on the mechanical properties of cement. Cement Concrete Res. 28(8), 1101-1104.
  17. Ahn, W.Y. and Moslemi, A.A. (1980) SEM examination of wood-Portland cement bonds. Wood Sci .13(2), 77-82.
  18. Karade SR, Irle M, Maher K (2003) Assessment of wood-cement compatibility: A new approach. Holzforschung, 57: 672-680.
  19. "The Advantages of ETFE Fluoropolymer Tubing". Fluorotherm. April 1, 2015.

External links

Media related to Building materials at Wikimedia Commons

This article is issued from Wikipedia - version of the 12/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.