Fourier–Deligne transform
In algebraic geometry, the Fourier–Deligne transform, or ℓ-adic Fourier transform, or geometric Fourier transform, is an operation on objects of the derived category of ℓ-adic sheaves over the affine line. It was introduced by Pierre Deligne on November 29, 1976 in a letter to David Kazhdan as an analogue of the usual Fourier transform. It was used by Laumon (1987) to simplify Deligne's proof of the Weil conjectures.
References
- Katz, Nicholas M.; Laumon, Gérard (1985), "Transformation de Fourier et majoration de sommes exponentielles", Publications Mathématiques de l'IHÉS (62): 361–418, ISSN 1618-1913, MR 823177, erratum
- Kiehl, Reinhardt; Weissauer, Rainer (2001), Weil conjectures, perverse sheaves and l'adic Fourier transform, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 42, Berlin, New York: Springer-Verlag, ISBN 978-3-540-41457-5, MR 1855066
- Laumon, G. (1987), "Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil", Publications Mathématiques de l'IHÉS (65): 131–210, ISSN 1618-1913, MR 908218
This article is issued from Wikipedia - version of the 10/5/2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.