Gromov product

In mathematics, the Gromov product is a concept in the theory of metric spaces named after the mathematician Mikhail Gromov. The Gromov product can also be used to define δ-hyperbolic metric spaces in the sense of Gromov.

Definition

Let (X, d) be a metric space and let x, y, z  X. Then the Gromov product of y and z at x, denoted (y, z)x, is defined by

Motivation

Given three points x, y, z in the metric space X, by the triangle inequality there exist non negative numbers a, b, c such that . Then the Gromov products are . In the case that the points x, y, z are the outer nodes of a tripod then these Gromov products are the lengths of the edges.

A tripod with edges of lengths a, b, c. The distance form node x to node y is a+b. The Gromov product (y, z)x equals a.

In Euclidean space, the Gromov product (y, z)x equals the distance between x and the point where the inscribed circle of the triangle xyz touches the edge xy.

Properties

Points at infinity

Consider hyperbolic space Hn. Fix a base point p and let and be two distinct points at infinity. Then the limit

exists and is finite, and therefore can be considered as a generalized Gromov product. It is actually given by the formula

where is the angle between the geodesic rays and .[1]

δ-hyperbolic spaces and divergence of geodesics

The Gromov product can be used to define δ-hyperbolic spaces in the sense of Gromov.: (X, d) is said to be δ-hyperbolic if, for all p, x, y and z in X,

In this case. Gromov product measures how long geodesics remain close together. Namely, if x, y and z are three points of a δ-hyperbolic metric space then the initial segments of length (y, z)x of geodesics from x to y and x to z are no further than 2δ apart (in the sense of the Hausdorff distance between closed sets).

References

  1. Roe, John (2003). Lectures on coarse geometry. Providence: American Mathematical Society. p. 114. ISBN 0-8218-3332-4.
This article is issued from Wikipedia - version of the 3/28/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.