p-adic cohomology
In mathematics, p-adic cohomology means a cohomology theory for varieties of characteristic p whose values are modules over a ring of p-adic integers. Examples (in roughly historical order) include:
- Serre's Witt vector cohomology
- Monsky–Washnitzer cohomology
- Infinitesimal cohomology
- Crystalline cohomology
- Rigid cohomology
See also
- p-adic Hodge theory
- Étale cohomology, taking values over a ring of l-adic integers for l≠p
This article is issued from Wikipedia - version of the 9/6/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.