Ryanodine receptor 2

RYR2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases RYR2, ARVC2, ARVD2, RYR-2, RyR, VTSIP, ryanodine receptor 2
External IDs MGI: 99685 HomoloGene: 37423 GeneCards: RYR2
Genetically Related Diseases
obesity, lymphoblastic leukemia[1]
Targeted by Drug
adenosine triphosphate, caffeine, suramin, procaine[2]
Orthologs
Species Human Mouse
Entrez

6262

20191

Ensembl

ENSG00000198626

ENSMUSG00000021313

UniProt

Q92736

E9Q401

RefSeq (mRNA)

NM_001035

NM_023868

RefSeq (protein)

NP_001026.2

NP_076357.2

Location (UCSC) Chr 1: 237.04 – 237.83 Mb Chr 13: 11.55 – 12.11 Mb
PubMed search [3] [4]
Wikidata
View/Edit HumanView/Edit Mouse

Ryanodine receptor 2 (RYR2) is a protein found primarily in cardiac muscle. In humans, it is encoded by the RYR2 gene.[5][6][7] In the process of cardiac calcium-induced calcium release, RYR2 is the major mediator for sarcoplasmic release of stored calcium ions.

Structure

The channel is composed of RYR2 homotetramers and FK506-binding proteins found in a 1:4 stoichiometric ratio. Calcium channel function is affected by the specific type of FK506 isomer interacting with the RYR2 protein, due to binding differences and other factors.[8]

Function

The RYR2 protein functions as the major component of a calcium channel located in the sarcoplasmic reticulum that supplies ions to the cardiac muscle during systole. To enable cardiac muscle contraction, calcium influx through voltage-gated L-type calcium channels in the plasma membrane allows calcium ions to bind to RYR2 located on the sarcoplasmic reticulum. This binding causes the release of calcium through RYR2 from the sarcoplasmic reticulum into the cytosol, where it binds to the C domain of troponin, which shifts tropomyosin and allows the myosin ATPase to bind to actin, enabling cardiac muscle contraction.[9] RYR2 channels are associated with many cellular functions, including mitochondrial metabolism, gene expression and cell survival, in addition to their role in cardiomyocyte contraction.[10]

Clinical significance

Deleterious mutations of the ryanodine receptor family, and especially the RYR2 receptor, lead to a constellation of pathologies leading to both acute and chronic heart failure collectively known as "Ryanopathies."[11]

Mutations in the RYR2 gene are associated with catecholaminergic polymorphic ventricular tachycardia, stress-induced polymorphic ventricular tachycardia, and arrhythmogenic right ventricular dysplasia.[12]

Mice with genetically reduced RYR2 exhibit a lower basal heart rate and fatal arrythmias.[13]

Interactions

Ryanodine receptor 2 has been shown to interact with:

See also

References

  1. "Diseases that are genetically associated with RYR2 view/edit references on wikidata".
  2. "Drugs that physically interact with Ryanodine receptor 2 view/edit references on wikidata".
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH (September 1990). "Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum". J Biol Chem. 265 (23): 13472–83. PMID 2380170.
  6. Otsu K, Fujii J, Periasamy M, Difilippantonio M, Uppender M, Ward DC, MacLennan DH (October 1993). "Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes". Genomics. 17 (2): 507–9. doi:10.1006/geno.1993.1357. PMID 8406504.
  7. Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, Larderet G, Brahmbhatt B, Brown K, Bauce B, Muriago M, Basso C, Thiene G, Danieli GA, Rampazzo A (February 2001). "Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2)". Hum Mol Genet. 10 (3): 189–94. doi:10.1093/hmg/10.3.189. PMID 11159936.
  8. Guo T, Cornea RL, Huke S, Camors E, Yang Y, Picht E, Fruen BR, Bers DM (June 2010). "Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and effects on Ca sparks". Circ. Res. 106 (11): 1743–52. doi:10.1161/CIRCRESAHA.110.219816. PMC 2895429Freely accessible. PMID 20431056.
  9. "Q92736 - RYR2_HUMAN".
  10. Bround MJ, Wambolt R, Luciani DS, Kulpa JE, Rodrigues B, Brownsey RW, Allard MF, Johnson JD (15 May 2013). "Cardiomyocyte ATP production, metabolic flexibility, and survival require calcium flux through cardiac ryanodine receptors in vivo". Journal of Biological Chemistry. 288 (26): 18975–86. doi:10.1074/jbc.M112.427062. PMID 23678000.
  11. Belevych AE, Radwański PB, Carnes CA, Györke S (2013). "'Ryanopathy': causes and manifestations of RyR2 dysfunction in heart failure". Cardiovasc. Res. 98 (2): 240–7. doi:10.1093/cvr/cvt024. PMC 3633158Freely accessible. PMID 23408344.
  12. "Entrez Gene: RYR2 ryanodine receptor 2 (cardiac)".
  13. Bround MJ, Asghari P, Wambolt RB, Bohunek L, Smits C, Philit M, Kieffer TJ, Lakatta EG, Boheler KR, Moore ED, Allard MF, Johnson JD (September 2012). "Cardiac ryanodine receptors control heart rate and rhythmicity in adult mice". Cardiovasc. Res. 96 (3): 372–80. doi:10.1093/cvr/cvs260. PMID 22869620.
  14. 1 2 3 4 Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (May 2000). "PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts". Cell. 101 (4): 365–76. doi:10.1016/S0092-8674(00)80847-8. PMID 10830164.
  15. Marx SO, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang YM, Rosemblit N, Marks AR (May 2001). "Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers". J. Cell Biol. 153 (4): 699–708. doi:10.1083/jcb.153.4.699. PMC 2192391Freely accessible. PMID 11352932.
  16. Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW, Fishman GI (November 1995). "Association of sorcin with the cardiac ryanodine receptor". J. Biol. Chem. 270 (44): 26411–8. doi:10.1074/jbc.270.44.26411. PMID 7592856.

Further reading

This article is issued from Wikipedia - version of the 11/24/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.